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Abstract
Invertebrate herbivores depend on external temperature for growth and metabolism. Continued warming in tundra ecosys-
tems is proposed to result in increased invertebrate herbivory. However, empirical data about how current levels of inverte-
brate herbivory vary across the Arctic is limited and generally restricted to a single host plant or a small group of species, 
so predicting future change remains challenging. We investigated large-scale patterns of invertebrate herbivory across the 
tundra biome at the community level and explored how these patterns are related to long-term climatic conditions and year-
of-sampling weather, habitat characteristics, and aboveground biomass production. Utilizing a standardized protocol, we 
collected samples from 92 plots nested within 20 tundra sites during summer 2015. We estimated the community-weighted 
biomass lost based on the total leaf area consumed by invertebrates for the most common plant species within each plot. 
Overall, invertebrate herbivory was prevalent at low intensities across the tundra, with estimates averaging 0.94% and rang-
ing between 0.02 and 5.69% of plant biomass. Our results suggest that mid-summer temperature influences the intensity of 
invertebrate herbivory at the community level, consistent with the hypothesis that climate warming should increase plant 
losses to invertebrates in the tundra. However, most of the observed variation in herbivory was associated with other site 
level characteristics, indicating that other local ecological factors also play an important role. More details about the local 
drivers of invertebrate herbivory are necessary to predict the consequences for rapidly changing tundra ecosystems.

Keywords  Background herbivory · Biomass loss · Climate change · Community-weighted average · Invertebrate · Insects · 
Tundra

Introduction

Invertebrate herbivores can have strong effects on the struc-
ture and function of Arctic ecosystems. Most studies of 
invertebrate herbivory in high-latitude systems have focused 
on outbreak events, when herbivores consume massive 
amounts of plant biomass over a short time period. Out-
breaks have most frequently been reported for boreal forests 

and the forest-tundra ecotone (Jepsen et al. 2013; Karlsen 
et al. 2013; Kaukonen et al. 2013) whereas few have been 
described in true tundra systems (Post and Pedersen 2008; 
Lund et al. 2017). In contrast, under non-outbreak densities, 
invertebrates are responsible for low but chronic biomass 
removal, referred to as background herbivory (Kozlov and 
Zvereva 2017). At these low densities the immediate effects 
of invertebrates appear minimal (Kotanen and Rosenthal 
2000), but the longer-term nature of background herbivory 
may have prolonged effects on plant growth (Zvereva et al. 
2012), community interactions (Barrio et al. 2013), and 
nutrient fluxes (Metcalfe et al. 2016). The current under-
standing of the patterns of background invertebrate her-
bivory in tundra environments is based on only a few stud-
ies that focused on either a single host plant species (Betula 

Electronic supplementary material  The online version of this 
article (https​://doi.org/10.1007/s0030​0-019-02568​-3) contains 
supplementary material, which is available to authorized users.

 *	 Sarah I. Rheubottom 
	 srheubot@ualberta.ca

Extended author information available on the last page of the article

http://orcid.org/0000-0001-9757-6652
http://orcid.org/0000-0002-8120-5248
http://orcid.org/0000-0002-9500-4244
http://orcid.org/0000-0001-5084-850X
http://orcid.org/0000-0001-5505-1372
http://orcid.org/0000-0002-2644-2144
http://orcid.org/0000-0002-3028-9488
http://orcid.org/0000-0002-2624-3508
http://orcid.org/0000-0003-3804-7077
http://orcid.org/0000-0002-1521-3856
http://orcid.org/0000-0002-6692-4375
http://orcid.org/0000-0002-0633-5595
http://orcid.org/0000-0002-7209-6078
http://orcid.org/0000-0002-8994-9305
http://crossmark.crossref.org/dialog/?doi=10.1007/s00300-019-02568-3&domain=pdf
https://doi.org/10.1007/s00300-019-02568-3


	 Polar Biology

1 3

glandulosa-nana complex, Barrio et al. 2017) or on specific 
growth forms (shrubs, Kozlov et al. 2015a). No studies have 
assessed patterns of invertebrate background herbivory at 
the community level across the tundra biome.

The interaction between invertebrate herbivores and 
plants in tundra ecosystems occurs under environmental con-
ditions characterized by cold temperatures, a short growing 
season, and precipitation that falls mostly as snow (Strathdee 
and Bale 1998). Current trends associated with rapid climate 
change at high latitudes indicate that the tundra biome will 
continue to experience increased temperature and altered 
precipitation regimes, as well as a longer growing season 
(Post et al. 2009; IPCC 2013; Overland et al. 2017). Inver-
tebrate ecophysiology strongly depends on temperature, so 
even moderate increases in temperature have the potential 
to alter the duration of the life cycles (or parts of them) of 
invertebrate herbivores, increase their densities and activity 
(Asmus et al. 2018), or alter their distribution ranges or those 
of their competitors (Hodkinson and Bird 1998; Bale et al. 
2002; Bolduc et al. 2013). For example, higher summer tem-
peratures can increase the intensity of herbivory (Birkemoe 
et al. 2016), create phenological mismatches between spe-
cialist herbivores and plant species (Kharouba et al. 2015) or 
alternatively, induce stronger phenological matches between 
plants and herbivores (Jepsen et al. 2011; Pureswaran et al. 
2019), and/or alter herbivore feeding choices (Barrio et al. 
2016a), although these patterns are far from being general 
in either space or time (Kozlov and Zvereva 2015; Zvereva 
et al. 2016; Kozlov et al. 2017). Moreover, changes in pre-
cipitation could affect the amount of damage caused by 
invertebrate herbivores indirectly, through their influence on 
leaf traits, such as leaf toughness (based on the structural 
materials that make up the leaf) or leaf chemistry. Stress 
due to dry conditions can either increase the toughness of 
leaves, thus decreasing their palatability for invertebrate her-
bivores (Onoda et al. 2011) or induce plants to decrease the 
production of herbivore defense chemicals, resulting in an 
increase in the palatability of leaf tissues (Berg et al. 2008). 
Kozlov et al. (2015b) found that precipitation contributed 
to latitudinal patterns observed in invertebrate herbivory, 
such that increased precipitation resulted in higher levels 
of invertebrate-caused defoliation. With the potential for so 
many different responses to climate change, it is essential 
to document the existing patterns of invertebrate herbivory 
and to explore the drivers behind these patterns in order to 
predict future changes.

The level of herbivory on plants can also be driven by 
local site characteristics, such as habitat type, productiv-
ity, or plant community composition. Herbivory is generally 
lower in more diverse plant communities, but this varies 
with the host specificity of insects, and plant species com-
position may be more important than species richness per se 
(Jactel and Brockerhoff 2007). For example, different growth 

forms or functional groups of plants differ in their palat-
ability and responses to herbivory (Turcotte et al. 2014). In 
general, deciduous shrubs are more palatable than evergreen 
shrubs (MacLean Jr. and Jensen 1985; Turcotte et al. 2014), 
and shrubs, due to plant apparency, tend to be consumed 
more than herbaceous plants (Turcotte et al. 2014). Grami-
noid species are often less palatable due to lower nutritional 
content and stronger physical defenses (Tscharntke and 
Greiler 1995). Thus, local and site level factors influencing 
variation in herbivory need to be considered in combination 
with climate drivers.

We assessed invertebrate herbivory within vascular plant 
communities across the tundra biome to investigate the role 
of climatic drivers, specifically temperature and precipita-
tion, habitat, and aboveground plant biomass, in explaining 
the variation in plant losses to invertebrate herbivores. We 
predicted that higher levels of invertebrate herbivory would 
be associated with sites experiencing higher summer tem-
peratures and higher precipitation, and would vary across 
habitats with different aboveground biomass availability, 
such that sites with more plant biomass will experience 
higher levels of herbivory (Bonser and Reader 1995). We 
also assessed the hypothesis that different plant functional 
groups (deciduous shrub, evergreen shrub, graminoid, herbs) 
experience different levels of herbivory due to differences 
in palatability, such that deciduous shrubs would have more 
damage than evergreen shrubs, shrubs would have more 
damage than herbaceous plants, and that herbs would have 
more damage than graminoids. To do this we examined 
invertebrate herbivory at the species level for 42 vascular 
plant species grouped into broad functional groups. To our 
knowledge, this is the first survey of community level inver-
tebrate herbivory in the tundra. Our coordinated study may 
provide a framework for future global monitoring efforts of 
invertebrate herbivory in other ecosystems too.

Methods

Study design

This study was conducted during the summer of 2015 and 
involved researchers working at 20 Arctic/alpine tundra 
sites in the Northern Hemisphere (Fig. 1). In order to ensure 
consistent data collection, we adopted a common protocol 
designed by the Herbivory Network (Barrio et al. 2016b; 
Online Resource 1) that provided a simple, hierarchical 
design for sampling individual plants and plots within each 
study site. The protocol was distributed to members of the 
Herbivory Network who generally selected locations associ-
ated with their own long-term research efforts; these sites 
are described in more detail in Rheubottom (2018). Sites 
spanned high-latitude tundra ecosystems ranging from 55.24 
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to 78.60°N and one alpine site in the Swiss Alps (Val Bercla 
46.47°N).

A study site was broadly defined as an area of 0.25–25 
km2 where sampling was conducted. At each site, the domi-
nant habitat type was identified, avoiding areas influenced 
by extremes in moisture, soil chemistry, or disturbances, so 
that study sites would represent a variety of habitats char-
acteristic of the tundra biome (Table 1). Habitat types were 
determined based on the broader habitat categories defined 
in the Circumpolar Arctic Vegetation Map (CAVM; Walker 
et al. 2005), or were classified as alpine tundra. Latnjajaure 
was included in the erect-shrub tundra category based on a 

similar definition from Virtanen et al. (2016). Overall, a total 
of 6 habitat types were considered (Table 1).

At each site, five plots (20 × 20 m) were established at 
least 100 m apart. Three focal species of vascular plants 
were identified in each plot based on their overall contribu-
tion to the community-wide foliar biomass, with the excep-
tion of Toolik Lake where five focal species were sampled 
(Table 1). Consequently, the focal species were plot-specific 
and could differ between plots within the same study site. In 
total, 42 focal species were sampled across all sites, includ-
ing 13 graminoids, 9 deciduous shrubs, 8 evergreen shrubs, 
and 12 herbs (Table 2).

Fig. 1   Community-weighted 
biomass lost (CWBL) to 
invertebrate herbivores at each 
of the 20 tundra sites. Size and 
shade of dots indicate intensity 
of herbivory, grouped into 6 
bins. Audkuluheidi (Iceland) 
and Ailigas (Finland) (see 
Table 1) are covered by nearby 
sites, and belong in the 0.0–0.3 
bin and 0.3–0.6 CWBL bins, 
respectively
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Sampling protocol

Three individual plants for each of the focal species at each 
plot were identified. Plants were considered different “indi-
viduals” when they were at least 10 m apart. Leaf samples 
(ca. 100 leaves per plant individual) were collected from 
each individual. In the case of plants that did not have 
enough leaves, samples were collected from “aggregates”, 
i.e., multiple stems growing close together (within 1–2 m). 
The selection of individuals or aggregates was undertaken 
from a distance of 5–10 m to avoid recognition of inverte-
brate herbivory during the selection process and avoid con-
firmation bias (i.e., picking individuals specifically because 
they were damaged or undamaged; Kozlov et al. 2014). In 
many cases, branches or stems were collected to avoid dam-
aging leaves by detaching them in the field, or missing leaves 
with a large amount of damage (i.e., only the petiole remain-
ing). Samples were press-dried as herbarium specimens and 
sent for analysis by the first author.

The contribution of each of the focal species to the bio-
mass in each plot was estimated using the point-intercept 
method. In each plot, 16 sampling points were placed in a 
regular grid 5 m apart. Point-intercept data were collected 
at each sampling point using a 50 × 50 cm frame with ten 
fixed pin positions. The number of times a focal species 
touched each pin was recorded (i.e., multiple hits per pin per 
focal species were possible). Three of the sampling points 
were randomly selected to harvest total aboveground plant 
biomass using the same frame, after the point-intercept data 
were collected. Biomass samples were stored in paper bags 
and air-dried in the field; in the lab, biomass samples were 
sorted into the three focal species recorded for each plot and 
‘other’ biomass, and weighed to the nearest mg.

The sampling points that had both point-intercept and 
biomass data were used to calculate a conversion factor 
to estimate plant biomass based on point-intercept data as 
described by Bråthen and Hagberg (2004; Online Resource 
2). Biomass estimates for each focal species in each plot 
were then calculated based on the 16 sampling points, mul-
tiplying the mean number of hits per pin of each of the focal 
species by the corresponding conversion factor.

Leaf damage assessment

Leaf sample preparation involved detaching the leaves from 
the branches/stems or, for graminoids, at the ligule. All 
leaves were sampled starting from the uppermost one on 
each branch/stem, until the desired number of leaves was 
obtained. A dissecting microscope was used to observe 
leaves for damage. Each leaf was examined on both sides 
with a light source shinning down on to the leaf to assess 
external damage, and then, both sides were examined with a 
light source shinning up through the leaf to evaluate internal Ta
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damage (Barrio et al. 2017). Leaf mine damage was identi-
fied by the presence of invertebrates inside the mines, while 
galls that were unclear were reviewed by entomologists at 
the University of Alberta.

The percent area of each leaf that was damaged by 
invertebrates (either chewing or skeletonization caused 
by external feeders, mining, or gall damage) was visually 
attributed to one of the following damage categories: intact 
leaves, < 1%, 1–5%, 5–25%, 25–50%, 50–75%, and > 75% of 
leaf area damaged or removed by herbivores (Kozlov 2008; 
Barrio et al. 2017). When two different types of invertebrate 
herbivory were present on the same leaf (3.3% of leaves), the 
second damage type (smaller percentage) was recorded as 
secondary damage and included in the analysis (see below), 
but the leaf was not counted twice in the total number of 
leaves. Data for the damage assessment of Betula nana was 
previously used in Barrio et al. (2017) which focused on 
examining variation in invertebrate herbivory for a single 
species complex across the Arctic.

Calculation of community‑weighted estimates 
of biomass lost (CWBL)

As an approximation of foliar loss to invertebrate herbivores, 
the percent leaf area damaged (PLAD) was calculated as 
the mean leaf area damaged for each of the focal species in 
a plot. The number of leaves in each damage category was 
multiplied by the median value of damage in that category 
(for example, a leaf in the 25–50% bin was assigned as hav-
ing 37.5% damage), summed over all damage categories and 
divided by the total number of leaves in the sample (Barrio 
et al. 2017).

The community-weighted biomass lost (CWBL, %) due 
to total invertebrate leaf damage was calculated for each plot 
(Online Resource 3), taking into account the proportion of 
biomass contributed by each of the focal species, and how 
much of this was consumed by invertebrates, as estimated 
by PLAD. CWBL takes into account the effect of differ-
ent species composition at different study sites, and allows 
for comparisons across sites with different habitat types. In 
order to control for the biomass of the focal species being 
only a proportion of the total community biomass, the per-
cent contribution of each focal species to the total biomass 
was incorporated into the CWBL calculation. In the case of 
Toolik Lake, no total biomass harvest data was available but 
five focal species were reported; it was assumed that these 
five focal species represented most of the biomass at the 
community level and the contribution of each focal species 
to the biomass of these five focal species was included in 
the CWBL calculations (Online Resource 3). CWBL was 
expressed as a percentage of the total biomass in a plot to 
control for the variation in biomass across tundra sites, from 
polar deserts to shrub tundra.

Statistical analyses

The combined leaf damage caused by different feeding 
guilds of invertebrate herbivores (defoliators, miners and 
gallers) was used in our analysis because some types of 
leaf damage, such as mining or galling, tend to be infre-
quent in tundra (Barrio et al. 2017). The variation in CWBL 
was analyzed using Linear Mixed Effects Models (LMM) 
(Zuur et al. 2009), including study site as a random fac-
tor to account for the study design of multiple plots sam-
pled within each site. Predictor variables included climatic 
variables (long-term mean July temperature and precipita-
tion, and July 2015 temperature and precipitation relative 
to the long-term average), total plant biomass per m2, and 
the habitat type of the study site (Table 1; Online Resource 
3). Temperature and precipitation data were compiled from 
the CRU TS3.10 Dataset (Harris et al. 2014), and divided 
into long-term July means (based on data from 1990–2015) 
and the deviations from the respective means in July 2015. 
Long-term means incorporated interannual variation in tem-
perature and precipitation, while the 2015 values indicated 
deviations in the weather conditions during the sampling 
year relative to the long-term average (i.e., if the summer 
2015 was colder and/or wetter than average at a particular 
site). July was used to indicate mid-summer conditions that 
coincide with peak temperatures and peak plant biomass 
(Myers-Smith et al. 2015; Barrio et al. 2017). The six differ-
ent habitats included wetlands, erect-shrub tundra, prostrate-
shrub tundra, barren tundra, graminoid tundra, and alpine 
tundra (Table 1).

Five models were constructed (Table 3) based on our a 
priori hypotheses that herbivory would be driven by: (1) 
the long-term mean July temperature; or by more additional 
variables: (2) the long-term mean precipitation, (3) the 2015 
deviations from average temperature and precipitation, (4) 
aboveground plant biomass, or (5) habitat type. The five 
models were compared using AICc values (Table 3). Col-
linearity between the predictors was assessed across the 20 
sites, and only combinations of variables with correlations 
r < |0.55| were included in the models (Table 3). Running 
the analyses with and without the alpine site and with and 
without Murmansk, which showed the largest value of 
CWBL (Fig. 2) did not change the results, so these sites 
were retained in the analyses.

In a separate analysis, we examined whether different 
plant growth forms and/or functional groups experienced 
different levels of invertebrate herbivory. Using a Welch’s 
two-sample t test, we compared woody plants to herbaceous 
plants, deciduous shrubs to evergreen shrubs, and herbs to 
graminoids.

Model assumptions were checked by visually examin-
ing plots of the residuals versus fitted values to determine 
homoscedasticity of variances; normality of residuals was 
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examined via QQ-plots. In order to meet the assumptions the 
CWBL values were log10-transformed prior to analysis. All 
statistical analyses were carried out in R 3.5.1 (R Develop-
ment Core Team 2017), and LMMs were built using the 
lme4 package (Bates et al. 2015).

Results

Distribution of damage among herbivore feeding 
guilds

Invertebrate damage was found in 9062 of 77,586 leaves 
examined (11.7%). The majority of damaged leaves (7265 
or 80.2%) had feeding marks of externally defoliating 

invertebrates. We found only 772 mined leaves and 1025 
leaves with insect or mite galls (8.5% and 11.3% of all 
damaged leaves, respectively). Damage by defoliators was 
recorded in leaves of 35 of the 42 focal plant species, by leaf 
miners in 21 species, and by gall-forming herbivores in 21 
species (Table 2).

Variation in herbivory among focal species

The 42 focal species included in our analyses experienced 
varying levels of invertebrate herbivory. The highest aver-
age percent leaf area damaged (PLAD) from all samples 
combined was 26.05% (Vaccinium myrtillus), while seven 
plant species had no invertebrate damage at all (Table 2). 
Only 13 species experienced leaf area losses greater than 
1%, with only three of those species experiencing more than 
5% (V. myrtillus, Salix reticulata (9.13%), and Oxyria digyna 
(6.13%); Table 2).

We found differences in invertebrate herbivory between 
plant growth forms and/or functional groups. Foliar losses 
of woody plants were four times higher than that of herba-
ceous plants (2.93% vs. 0.70%; t561.42 = 5.16, p < 0.0001). 
Within woody plants, the losses of deciduous shrubs were 14 
times greater than the losses of evergreen shrubs (5.20% vs. 
0.37%; t285.17 = 5.38, p < 0.0001). Within herbaceous plants, 
the losses of herbs were four times as large as the losses of 
graminoids (1.16% vs. 0.28%; t121.15 = 2.50, p = 0.0137).

Variation in herbivory among study sites

At the site level, the CWBL due to invertebrate herbivores 
varied from 0.02% (Bogstranda, in Svalbard) to 5.68% (Mur-
mansk, Russia), with an average (± SE) of 0.94 ± 0.31% 

Fig. 2   The relationship between 
the mean community-weighted 
biomass lost (CWBL) to 
invertebrate herbivores and the 
mean long-term July tempera-
ture. Each point represents a 
study site (n = 20); site names 
are indicated with abbreviations 
(see Table 1). The fitted line 
and 95% confidence interval 
(shaded) are shown. The point 
with the highest CWBL corre-
sponds to Murmansk (MURM); 
running the analyses with 
and without this point did not 
change the overall trend

Table 3   The five models used to explain the variation in community-
weighted biomass lost (CWBL) to invertebrate herbivory and the null 
model

Models were created using Linear Mixed Effects Models with site as 
a random effect. AICc values and weights are presented for compari-
son between models
LTMT long-term mean temperature, LTMP long-term mean precipita-
tion, DT2015 2015 temperature difference, DP2015 2015 precipita-
tion difference, TBM total plant biomass, Habitat site habitat type

Model Predictors df AICc AICc Weight

Null N/A 3 142.3 0.06
1 LTMT 4 138.5 0.38
2 LTMT + LTMP 5 140.8 0.13
3 LTMT + DT2015 + DP2015 6 140.8 0.13
4 LTMT + TBM 5 139.6 0.23
5 LTMT + Habitat 9 141.5 0.09
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(n = 20; Fig. 1; Online Resource 3). Aboveground biomass 
of vascular plants at our plots ranged from 2.56 to 854.68 g/
m2. CWBL ranged between 0.002 and 10.68% across all 
plots examined, with an average (± SE) of 0.98 ± 0.17% 
(n = 92).

Two models received similar support (ΔAICc < 2; models 
1 and 4 in Table 3). Both models included the effect of long-
term mean July temperature (Table 3); the second best model 
also included total aboveground biomass, but its effect was 
not significantly different from zero (estimate = − 0.001, 
95% CI = (− 0.002, 0); Online Resource 4). The models 
predicted a linear positive relationship between the log-
transformed community-weighted biomass lost (CWBL) 
and July temperature (Fig. 2), with an estimated increase 
of 0.11% CWBL per 1  °C (model 1: estimate = 0.106, 
95% CI = (0.028, 0.184); [model 4: estimate = 0.114, 95% 
CI = (0.038, 0.190)]. However, the models still had a high 
percentage of unexplained variability between the different 
tundra sites, associated with the random effect (model 1: 
67.73%, model 4: 65.14%; Online Resource 4).

Discussion

Invertebrate herbivory was detected at all our 20 study sites, 
suggesting that it is a widespread phenomenon throughout 
the tundra biome. However, the intensity of herbivory was 
generally low and seemed to be influenced by summer tem-
perature and other unknown local site characteristics.

At the community level, the mean foliar biomass lost 
to invertebrates was 0.94% (n = 20), ranging from 0.02 to 
5.69%. These levels are consistent with the average value 
of 0.56% reported from shrubs growing in tundra regions of 
the European Arctic (Kozlov et al. 2015a) and with an esti-
mate of 1.20% loss calculated from the regressions of woody 
plant herbivory vs. latitude (after Kozlov et al. 2015b) for 
the average latitude of our Arctic study sites (68.1°N). Thus, 
we conclude that in tundra, plant foliar losses to inverte-
brate herbivores at background (i.e., non-outbreak) levels are 
around 1% of foliar biomass. This value is 5–13 times lower 
than reported in temperate plant communities. For example, 
in temperate herbaceous communities, invertebrates reduced 
plant biomass by 13% (Coupe and Cahill 2003), and tis-
sue loss due to invertebrates in temperate forests was 5–8% 
(Kozlov et al. 2015b). This discrepancy may be partially 
attributed to the species-specific data used for the temper-
ate studies compared to the community-weighted method 
used in our study, or may simply reflect the lower levels of 
invertebrate herbivory in the tundra (Kozlov et al. 2015a).

The variation in community-weighted biomass lost to 
background invertebrate herbivory was associated with 
long-term summer temperatures. Our sites spanned a range 
of summer (July) temperatures across the tundra biome, 

from 2.9 to 14.8 °C. Warmer sites had significantly higher 
levels of invertebrate herbivory despite a large variation 
among sites. Our model indicated a logarithmic relation-
ship between long-term July temperature and CWBL, sug-
gesting that sites with higher temperatures have a more 
pronounced increase in herbivory than cooler sites. As a 
first step to approximate the effects of future warming on 
tundra invertebrate herbivory, we can adopt a space-for-
time substitution approach to broadly infer changes in 
herbivory from locations with different climatic variables 
(see for example Barrio et al. 2017). Given the lack of long-
term monitoring data on invertebrate herbivory in tundra 
and despite its limitations, this approach provides the best 
solution and allows generating predictions that can then be 
tested through monitoring or manipulative field experiments. 
According to our model, a single degree increase in tem-
perature will have a stronger effect on herbivory levels at 
higher temperatures (i.e., in the low Arctic) compared with 
lower temperatures (i.e., in the high Arctic). For example, an 
increase in temperature from 4 to 5 °C results in an increase 
in CWBL of 0.02%, while increasing from 13 to 14 °C 
results in an increase of 0.20%. Depending on the scenario, 
global temperatures are predicted to increase by 1.1–2.9 °C 
to 2.4–6.4 °C over the next century, and this increase is 
expected to be more pronounced in the Arctic (IPCC 2013; 
Overland et al. 2017). These predicted increases in tempera-
ture would shift even our coldest sites (in Svalbard, Norway; 
2.9 °C) into the temperature range where herbivory levels 
begin to increase more rapidly (Fig. 2). We also found that 
for sites with mean temperatures < 6 °C, there was very little 
variation in herbivory level – it was always very low and all 
observations were clustered near the trend line. However, 
at sites with mean July temperatures > 8 °C, the intensity 
of herbivory becomes much more variable, with some sites 
showing low herbivory while others had much higher levels. 
This suggests that a threshold may exist, below which inver-
tebrate herbivory is consistently low. Once this threshold is 
crossed at higher temperatures, herbivory can sometimes 
be very high but other site-specific factor(s) may be con-
straining the levels of herbivory, resulting in the variability 
observed in the present study (Fig. 2). However, our assess-
ment was based on a single year and temporal variation may 
not be consistent across sites, highlighting the need for long-
term monitoring of invertebrate herbivory across multiple 
sites in tundra ecosystems.

Our models indicate that long-term mid-summer tem-
peratures are partially responsible for this trend rather than 
the climatic conditions in the year of sampling. This may 
be partially related to the life histories of high-latitude 
insects, which tend to have life cycles that span multiple 
years (Danks 1992). Warmer summers year after year may 
thus have a greater effect than one single warm season, if, 
for example, insects are able to complete their life cycle in 
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fewer growing seasons, or if species are able to complete 
multiple generations in a single summer. Further, long-term 
warming could allow lower-latitude species (with shorter 
generation times, higher growth rates, and warmer tempera-
ture requirements) to persist at higher latitudes. In contrast, 
other studies have found that weather in the year of sampling 
has a stronger effect on herbivory than long-term climate 
data (Kozlov et al. 2013; Barrio et al. 2017). These studies 
however, were investigating herbivory levels on a single or 
a few plant species rather than at the community level. The 
number of plant species involved in studies estimating herbi-
vore damage can affect the inferences of these studies, with 
studies including fewer species tending to overestimate dam-
age (Zvereva and Kozlov 2019). Warming can also influence 
the feeding choices of invertebrate herbivores (Barrio et al. 
2016a; Gamarra et al. 2018), so patterns of herbivory of a 
single species may not be representative of what happens at 
the community level. An alternative explanation could be 
simply that the weather in the year of sampling in the pre-
sent study might have been unusual. Most sites had a colder 
(14 out of 20) and drier (16 out of 20) summer than their 
long-term average. Longer-term monitoring may be able to 
capture the effects of interannual temperature variation on 
herbivory, and this could be effectively implemented through 
coordinated efforts like the Circumpolar Biodiversity Moni-
toring Programme (CBMP; e.g., Gillespie et al. 2019).

Our models including precipitation had little support in 
explaining the variation in background invertebrate her-
bivory (Table 3), but this does not rule out an important 
role for precipitation as a mediating factor in changing 
tundra environments (Bintanja and Andry 2017). Barrio 
et al. (2017) found a positive effect of both temperature and 
precipitation when examining herbivory on dwarf birch 
(B. glandulosa-nana) across the tundra biome. Again, this 
could be an indication that patterns at the species level may 
not hold at the community level. Precipitation can influence 
invertebrate herbivory through its effects on leaf tough-
ness, yet at the community level this effect could be masked 
because the community can be made up of plant species with 
varying levels of drought tolerance.

A large percentage of the variation in invertebrate her-
bivory however was not explained by the effect of long-term 
mean summer temperature (i.e., the variance associated with 
the random effect of site was 67.73%). This suggests that 
local site characteristics other than temperature are driving 
differences in herbivory between the sites, and emphasizes 
the usefulness of longitudinal studies, such as the present 
one, to better explore the role of climate on biotic interac-
tions at a biome-wide scale. This site-specificity is consistent 
with recent studies that have found strong local effects in 
the structuring of Arctic arthropod communities (Hansen 
et al. 2016). For example, local variation in shrub cover 
can influence the composition of the arthropod community 

assemblage, through locally increasing habitat structural 
complexity, such that higher shrub cover leads to a larger 
and more diverse community of arthropods (Rich et al. 
2013; Asmus et al. 2018). At a local scale, herbivory rates 
can also be influenced by nutrient concentrations in the soil 
that influence leaf quality (Semenchuk et al. 2015). Higher 
nutrient concentrations can lead to increased palatability 
of plant species, and ultimately higher levels of herbivory 
(Torp et al. 2010a, b; Semenchuk et al. 2015). Presence of 
vertebrate herbivores may also affect the intensity of inver-
tebrate herbivory through their direct and indirect effects on 
the abundance of invertebrate herbivores (Suominen et al. 
1999, 2003).

Other local drivers, such as snow cover, can also con-
tribute to small-scale heterogeneity in tundra landscapes 
(Kankaanpää et al. 2018). Snow cover can vary substan-
tially on a local scale due to variations in topography (e.g., 
hollows with deep snow vs. windswept areas with little 
snow) (Torp et al. 2010a, b). Variation in the duration of 
snow cover can influence overwinter protection of plants 
(Torp et al. 2010a) and invertebrates (Danks 2004), timing 
of emergence for plants (Torp et al. 2010a) and invertebrates 
(Høye and Forchhammer 2008), the level of nitrogen in the 
soil (Semenchuk et al. 2015) and subsequently in leaf tissue 
(Torp et al. 2010a, b; Semenchuk et al. 2015), as well as 
the local composition of arthropod communities in tundra 
(Kankaanpää et al. 2018). Accounting for the variation in 
these local drivers and their effects on invertebrate herbivory 
would require site-specific measurements, but represent a 
critical step to understand the variability in the observed 
patterns of herbivory.

Lastly, the structure and composition of plant communi-
ties may also influence invertebrate herbivory. In general, 
different growth forms have differing leaf tissue palatability 
such that deciduous plants are more palatable than ever-
greens (MacLean Jr. and Jensen 1985; Turcotte et al. 2014). 
Within this study, the 13 species that had > 1% of their leaf 
area lost were deciduous shrubs (7 species), herbaceous spe-
cies (4), graminoids (1), and one palatable evergreen shrub 
(Vaccinium vitis-idaea). As well, deciduous shrubs had an 
average of 5.20% of their leaf area consumed compared with 
1.16% for herbs, 0.37% for evergreen shrubs, and 0.28% for 
graminoids. This result supports our hypothesis that different 
plant functional groups experience different levels of her-
bivory, with more palatable groups experiencing more dam-
age. These differences in the palatability of growth forms 
can translate into the differences observed between sites. 
For example, we measured the highest levels of background 
herbivory in Murmansk, where a large proportion (49.5%) 
of the focal species biomass corresponded to V. myrtillus 
and B. nana, both of which are palatable deciduous shrubs 
(MacLean Jr. and Jensen 1985). In contrast, Theistareykir 
in Iceland had one of the lowest levels of herbivory (0.06%) 
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and two of the three focal species at this site were unpalat-
able evergreen shrubs (Empetrum nigrum and Calluna vul-
garis). In the long term, shifts in plant community composi-
tion due to climate change—if more palatable plant species 
are favored—could amplify the effects of warming on insect 
herbivory predicted by our model. In this sense, assessing 
herbivory at the plant community level, while masking some 
of the individual species-specific responses, may be more 
representative of a more diverse invertebrate herbivore com-
munity, and ultimately of ecosystem responses to environ-
mental changes.

Conclusions

Our study provides a first assessment of herbivory at the 
community level across the tundra biome, providing a valu-
able baseline reference for evaluating future changes. Back-
ground invertebrate herbivory in the tundra biome at the 
community level is low (the average loss of foliar biomass 
is 0.94%). Our study suggests that plant losses to inverte-
brate herbivores in the tundra biome should increase, at least 
at some sites, as the climate warms, even if some of these 
losses could be offset by increased plant biomass production 
under warming (Day et al. 2008). Clarifying to what degree 
the relationship between climate and invertebrate herbivory 
is a direct effect of warmer temperature, or an indirect effect 
of warming temperatures on plant phenology, physiology, 
or abundance will help predict how the level of invertebrate 
herbivory on tundra plants will change in response to a 
warmer climate. Our results also emphasize that most of the 
variation in background invertebrate herbivory is associated 
with local site characteristics and highlights knowledge gaps 
in our understanding of invertebrate herbivory in tundra. It 
is important, however, to keep in mind that our results rep-
resent a single-year snapshot: future studies should include 
observations over longer periods of time to estimate year-
to-year variation in the intensity of herbivory, as temporal 
variation is also likely to play an important role. Ideally, 
future research should also include characterizations of the 
invertebrate herbivore communities and their changes over 
time.
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