УДК 631.41

ВЗАИМОДЕЙСТВИЕ МИКРОЭЛЕМЕНТОВ ПРИ СООСАЖДЕНИИ С ГУМИНОВЫМИ КИСЛОТАМИ

© 2020 г. Е. В. Поляков^{а,*}, И. В. Волков^а, А. А. Иошин^{а, б}, М. Я. Чеботина^в, В. П. Гусева^в

^а Институт химии твердого тела УрО РАН, 620990, Екатеринбург, ул. Первомайская, д. 91 ^б НПП «Эксорб», 620027, Екатеринбург, пер. Красный, д. 8б-11 ^в Институт экологии растений и животных УрО РАН, 620144, Екатеринбург, ул. 8 Марта, д. 202 * e-mail: polyakov(@)ihim.uran.ru

Получена 14.08.2018; после доработки 13.02.2019; принята к публикации 20.02.2019

На примере данных по сорбции–соосаждению микроэлементов, имитирующих продукты коррозии, активации, деления обсуждается характер изотерм сорбции катионов (М) природными гуминовыми кислотами (ГК). Показано, что зависимость коэффициента распределения микроэлемента (K_d) от отношения массы к объёму раствора ГК в области концентраций ГК 10–990 мг/л объясняется протеканием в сорбционной системе двух параллельных процессов: конкурентной сорбции ионов М и Ca(II) осадком ГК и образования несорбирующегося ($K_d < 10 \text{ мл/г}$) комплекса между ионом М и высокомолекулярными органическими соединениями, остающимися в растворе после осаждения ГК. Приведены данные оптической спектроскопии растворов ГК и растворов над осадком твёрдой ГК, показывающие присутствие в растворе высокомолекулярных органических соединений с максимумом при 220±20 нм и плечом при 264±30 нм, характерными для фульвокислот. Предложена вероятная схема взаимодействия катионов сорбата с осадком ГК и сопутствующими молекулами фульвокислот. Впервые приведены данные по изотопообменному выделению трития (THO) из водных растворов осадками ГК.

Ключевые слова: микроэлементы, радионуклиды, тритий, гуминовая кислота, соосаждение, фульвокислота, комплексообразование, конкурентная сорбция, модель

DOI: 10.31857/S0033831120010086

Гуминовые кислоты (ГК) выступают в качестве активных органических переносчиков ионов микроэлементов, их радионуклидов в водных и почвенных растворах [1-4]. Особенностью химического поведения ГК в растворах является их «дуализм», состоящий в проявлении свойств высокомолекулярных ионных комплексов с кислотными центрами различной силы и редокс-группами, а также свойств коллоидных растворов, склонных к коагуляции в результате протонирования преимущественно в кислых растворах [5–9]. Гуминовые вещества привлекают внимание не только необходимостью знания физико-химического и геохимического поведения продуктов их связывания с ионами в растворах, но возможностью управления процессами массопереноса радионуклидов и самопроизвольной очистки объектов природной среды на принципах зелёной химии и конкурентной сорбции [2, 3, 10, 11], при создании сорбционных барьеров переносу радионуклидов [12]. В процессы глобального накопления и переноса долгоживущих техногенных радионуклидов большой вклад вносит миграция радионуклидов цезия-137, стронция-90, трития, изотопов урана, трансурановых элементов, других долгоживущих радионуклидов. Эти радионуклиды возникают и сопутствуют ядерно-топливным циклам, способны попадать в окружающую среду при техногенных катастрофах, испытаниях ядерного оружия, технологических операциях, при хранении. Эффективность их связывания определяют кислотно-основные свойства гуминовых кислот [9, 13–15]. Роль ГК в переносе этих и подобных им по химическим свойствам радионуклидов в водной среде является важной самостоятельной задачей, решение которой позволит более детально оценивать технологические возможности устранения последствий радиоактивных аварий, прогнозировать рассеяние и ло-

Рис. 1. а – Изменение состава растворов ГК по отдельным элементам в процессе разбавления и б – соотношение концентрации элементов в исходных растворах ГК при различных способах оценки концентрации микроэлементов в фазах. Ось абсцисс: концентрация установлена путём вычисления степени разбавления исходного раствора ГК известного состава; ось ординат: концентрация установлена путём суммирования содержания элемента в фильтрате и осадке.

кализацию радионуклидов в окружающей среде. Так, ионы Sr(II) образуют устойчивые комплексы с гуминовыми кислотами в нейтральной и щелочной средах [16]. Их равновесные характеристики сорбции зависят от степени заполнения обменных центров ГК и уровня концентрации носителя Sr(II), ионов-аналогов в растворе, кислотности среды. Зависимость коэффициента распределения Sr(II) от начальной концентрации ГК при соосаждении заставляет предположить возможность образование ионами стронция несорбирующегося или слабо сорбирующегося комплекса с продуктами кислотного гидролиза ГК [17, 18]. Эти факты и предположения требуют уточнения на примере широкого круга микроэлементов с несхожим физико-химическим поведением [19, 20]. Целью работы являлось получение и анализ изотерм сорбции-соосаждения представительной многозарядных катионов элементов, установление химической природы продуктов комплексообразования в раствора ГК, формулировка на этой основе сорбционной модели взаимодействия микроэлементов сорбата при соосаждении с ГК.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

При проведении сорбционных экспериментов использовали раствор катионов, получаемый после растворения навески монацита в аликвоте серной кислоты [17]. Рабочие растворы с переменной концентрацией природной гуминовой кислоты готовили в пробирках из стекла путём введения дозатором (BIOHIT Proline Plus 1000) аликвот с раствором катионов в среду ГК различной концентрации. Использовали ГК природного происхождения из района г. Салехарда Тюменской области, состав которой отвечал следующей концентрации основных элементов (мас%): С 62.0, Н 4.3, N 1.4, О 32.5. Природные растворы ГК этого типа является гидрокарбонатно-хлоридно-натриевой слабоминерализованной водой, содержат 700-1050 мг/л гуминовых кислот, а также нейтральные и кислые битумы [21]. В таблице приведён состав главных элементов ГК, использованной нами в исследованиях.

Для подготовки сорбционных экспериментов в ёмкости 60 мл из полиэтилена высокого давления добавляли в разных пропорциях исследуемый раствор с концентрацией ГК 990 мг/л и дистиллированную воду так, чтобы концентрация ГК менялась, а общий объём после смешения составлял 49 мл. Затем в каждую ёмкость вносили аликвоту раствора микроэлементов, полученного после сернокислотного вскрытия и растворения навески монацита. Принятая процедура вытеснения серной и фосфорной кислот соляной кислотой обеспечивала последующее присутствие свободных суль-

фат- и фосфат-анионов на уровне менее 1–10 мг/л. Объём раствора V в каждой ёмкости составлял 50 мл, рН растворов поддерживали в диапазоне 1.5-2.0 при 23°С (измерение на рН-метре «Анион»). Состав исходных растворов по содержанию как части микроэлементов, так и ГК изменяли путем разбавления (рис. 1а). После подкисления и образования суспензии ГК ёмкости с растворами в закрытом виде выдерживаем 2 сут при периодическом перемешивании. Затем осадок ГК в каждом растворе отделяли фильтрованием на бумажном фильтре «синяя лента». Полученные фильтраты анализировали на содержание 30 микроэлементов на масс-спектрометре в режиме TotalQuant. Для определения массы сорбированных осадками ГК микроэлементов фильтры с ГК сушили на воздухе, озоляли в платиновых тиглях на воздухе при 500°С. Остатки от озоления обрабатывали 1 мл концентрированной HNO₃ ос.ч. и доводили объем исследуемого раствора до 50 мл бидистиллированной водой. В приготовленных растворах измеряли концентрацию выбранных элементов в условиях, аналогичных определению состава исходного раствора и фильтратов. Массспектрометрический анализ выполняли на приборе ELAN 9000, устанавливая начальную ($C_{\rm m}$) конечную (Ск) концентрации каждого из микроэлементов в анализируемых растворах и их концентрацию в осадке ГК ($C_{\Gamma K}$) без разбавления. По результатам определения этих величин, пересчитанных на массовую концентрацию микроэлемента в единице объёма исходного исследуемого раствора, вычисляли степень сорбции микроэлемента (S) по разнице в составе растворов до и после соосаждения с протонированной гуминовой кислотой [S(1)] и по соотношению содержания микроэлемента в твёрдой и жидкой фазах [S(2)]:

$$S(1) = (C_{\rm H} - C_{\rm K}); S(2) = C_{\rm \Gamma K}/(C_{\rm K} + C_{\rm \Gamma K}).$$
(1)

Погрешность определения концентрации микроэлемента в растворе составляла не более 5%. Сравнение результатов определения величины сорбции обеими способами (1) показало, что вычисление по методу S(2) содержат наименьшую препаративную погрешность [22]. Погрешность вызвана тем, что при установлении начальной концентрации в растворах $C_{\rm H}$ путём разбавления раствора ГК (рис. 1а), в области низких концентраций микроэлементов возникает систематическое смещение уровня концентрации, связанное с буферными свойствами гуминовых кислот при введении химических элементов с аликвотой раствора микроэлементов; поэтому увеличение степени разбавления ниже определённого предела не приводит к существенному уменьшению концентрации микроэлементов в растворе для отдельных элементов (например, Се, U, Th и др.; рис. 16).

Концентрацию трития в растворах ГК измеряли с использованием образцового радиоактивного раствора (ОРР, ВНИИФТРИ) тритированной воды ТНО с содержанием радионуклида 10⁶ Бк/г. Стеклянную ампулу с тритием объёмом 10 мл разбавляли в 1 л дистиллированной воды, полученная активность радионуклида составляла 966 Бк/мл или 9500 имп/(мин·мл) в условиях измерения. Рабочий раствор готовили разбавлением раствора ОРР в 25 раз. Полученный раствор разливали по 250 мл в плоскодонные колбы из стекла и отбирали из них по 1 мл тритиевой воды во флаконы из не содержащего калий стекла для установления исходной активности трития в каждой колбе. В раствор добавляли различное количество ГК. Один раствор оставляли без введения ГК (контроль). Значение рН приготовленных растворов составляло 7.5. Колбы закрывали притёртыми пробками и помещали в вытяжной шкаф до окончания эксперимента. Для исследования поглощения трития гуминовой кислотой из каждой колбы отбирали по 10 мл раствора в стеклянные стаканы на 50 мл и осаждали гуминовую кислоту прибавлением аликвоты 50 мкл 6 моль/л HCl. После 30-40 мин отстаивания раствор фильтровали через фильтр «синяя лента». В контрольный раствор также добавляли аналогичный объем HCl для учёта изменения эффективности измерения скорости счёта вследствие гашения от внесения кислоты. Значения рН отфильтрованных растворов составляли во всех вариантах опыта 1.5-2.0. Из фильтрата отбирали три параллельных пробы раствора по 1 мл в стеклянные флаконы для измерения β-активности. При проведении измерения трития объем использованной сцинтилляционной жидкости ЖС-8 на один флакон составлял 11 мл. Измерения проб проводили на спектрометрической установке DELTA-300. Пробы «стабилизировали», выдерживая в приборе 2 ч. Время трёхкратного измерения каждой пробы составляло 10 мин, обеспечивая относительную погрешность измерения скорости счёта не выше 3%. В процессе обработки данных по скорости счёта вводили поправку на изменение концентрации трития в экспериментальных растворах за счёт их разбавления водой и изменения кислотности [23].

Для записи оптических спектров пропускания нейтральных гуматных растворов различной степени разбавления, а также фильтратов, полученных после кислотного осаждения и отделения осадков ГК при рН 1.5-2.0, использовали спектрофотометр SpectraMax Plus 384 Absorbance Microplate Reader (Molecular Devices). Оптическую плотность исследуемых растворов определяли относительно дистиллированной воды. Для получения фильтратов нейтральные растворы ГК с разной концентрацией подкислили 0.1 мл раствора 6 моль/л HCl до pH 1.5-2, осадки ГК отфильтровали, фильтраты разбавляли дистиллированной водой и выполняли измерения. Это давало возможность проследить зависимость оптической плотности исследуемых растворов ГК от концентрации в них основного компонента – гуминовых кислот, установить связь между концентрацией и оптической плотностью нейтральных растворов ГК и относительной концентрацией растворимых в кислоте форм органического углерода, остающихся в фильтратах после отделения осадка ГК (фульвокислот ФК, нейтральных и кислых битумов). Размер и заряд коллоидных частиц ГК определяли на приборе динамического светорассеяния и электрофореза Zetasizer Nano ZS Particle Analyzer (Malvern Instruments).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Известно, что выделение ГК из природных образцов почвы, донных отложений, торфа, угля могут заметно различаться минеральным составом выделяемых ГК. Это связано с тем, что кислотная и щелочная обработка гумусовых веществ приводит к удалению из фракции ГК неорганических катионов и анионов, выполняющих роль стабилизаторов размера, формы и заряда молекулярных и коллоидных частиц ГК [24]. Выбранный нами источник гуминовых кислот благодаря отсутствию заметных количеств фульвокислот в своём составе позволял исследовать поведение ГК без дополнительных процедур химической очистки. Подобно

Рис. 2. Пример экспериментальных изотерм соосаждения микроэлементов с осадком ГК. pH 1.8, 23°C. Пояснения в тексте.

соосаждению микроэлементов с гидроксидами [25] коэффициент распределения (К_d) гуматных комплексов микроэлементов между раствором и осадком ГК определяется тем рН, при котором происходило их соосаждение с гуминовой кислотой, а также концентрацией растворённого органического углерода [18]. Пример экспериментальных зависимостей K_d при соосаждении микроэлементов от общей (начальной, до осаждения) концентрации ГК в исходном растворе минеральной воды приведён на рис. 2. Учитывая, что гуминовые кислоты практически нерастворимы при рН 1.5-2, наблюдаемая зависимость К_d-[ГК] может быть вызвана существованием в растворе после отделения осадка ГК несорбирующегося или слабо сорбирующегося комплекса микроэлементов с теми формами органического углерода, которые остаются в фильтрате после отделения осадка ГК. Согласно данным таблицы, к растворимым в кислоте органическим соединениям углерода принадлежат ФК, и в меньшей степени нейтральные и кислые битумы. Другой вероятной причиной наблюдаемых зависимостей K_d-[ГК] может быть конкурентная сорбция осадком катионов и, прежде всего, ионов Ca(II), присутствующих в фильтрате в макроконцентрациях (рис. 1а).

Принятая методика исследования сорбционных равновесий позволяет следующим образом описать возникающие конкурентные реакции с участием катиона M и катиона- конкурента Ca(II):

$$M_{aq} = -M, K_1 = [M]/[M_{aq}],$$
 (2)

Рис. 3. Спектры изменения оптической плотности (*D*) растворов природной ГК различной концентрации, pH 7.8, 23°С. Цифры у точек – концентрации ГК, мг/л; *D* – оптическая плотность раствора.

$$M_{aq} = Ca = Ca_{aq} + M, K_1 = [Ca_{aq}][M]/[M_{aq}][Ca],$$

$$M_{aq} + A\Phi = M(\Phi K)_{aq}, \beta(M) = [M(\Phi K)_{aq}]/[M_{aq}][\Phi K], \quad (3)$$

где символ черты указывает на принадлежность к твёрдой фазе сорбента, индекс аq указывает на состояние акваиона M в растворе, K_1 – концентрационная константа сорбции ионов M активными

группами гуминовой кислоты, K_2 – константа, характеризующая конкурентную сорбцию микроэлемента Са-формой ГК в концентрационном приближении, $\beta(M)$ концентрационная константа образования комплекса $M(\Phi K)_{aq}$ с лигандом, представляющим собой молекулы ФК в кислом растворе над осадком ГК. Предполагается, что этот комплекс не сорбируется твёрдой фазой ГК. Комбинируя уравнения (2) и (3), можно представить предполагаемые реакции конкурентной сорбции ионов М и Са(II) активными группами ГК в следующем виде:

$$K_{\rm d}({\rm M}) = [{\rm M}] / \{[{\rm M}_{\rm aq}] + {\rm M}(\Phi{\rm K})_{\rm aq}]\}$$

= $K_1({\rm M}) / \{1 + \beta({\rm M})[(\Phi{\rm K})\},$

 $K_{d}(M,Ca) = K_{1}(M,Ca)(1 + \beta(Ca)[(\Phi K)]/\{1 + \beta(M)[(\Phi K)]\},$ $K_{d}(M,Ca) = K_{d}(M)/K_{d}(Ca), K_{1}(M,Ca) = K_{1}(M)/K_{1}(Ca). (4)$

Для установления состава кислоторастворимых соединений органического углерода в природной воде было выполнено спектрофотометрическое исследование растворов минеральной воды, продуктов её разбавления бидистиллированной водой и кислых фильтратов после отделения ГК из природной воды при рН 1.8. Характер оптических спектров исследуемых растворов показал, что использованный нами природный раствор является

Рис. 4. а – Спектры изменения оптической плотности фильтратов, полученных после осаждения ГК различной концентрации, pH 1.8, 23°С. Числа на графике – значения степени разбавления фильтрата после осаждения ГК с концентрацией 990 мг/л, отн. ед. На вставке – оптические спектры поглощения природных ФК различного происхождения с близкой к фильтратам концентрацией [31]. б – оптический спектр фильтрата при разбавлении 0.4 и его разложение на две составляющих по программе PeakFit. Точки – экспериментальный спектр, линии – результат разложения спектра на две составляющие; R^2 – коэффициент детерминации, SE – стандартная погрешность линеаризации, *F*-статистика (R^2 = 0.994; SE = 0.008; *F* = 1048). Номера кривых на вставке – источник ФК [31]: *1* - пахотные земли интенсивного пользования, *2* – луга интенсивного пользования, *3* – земли переходного от пахотных к луговым типа, *4* – луга длительного пользования, *5* – луг, *6* – ольховое болото.

ВЗАИМОДЕЙСТВИЕ МИКРОЭЛЕМЕНТОВ

Ион, параметр	Концентрация, мг/л; значение	Примечания
NH4 ⁺	0.05	
(K,Na) ⁺	0.18	
Mg^{2+}	0.01	
Ca ²⁺	0.02	
Cl-	0.30	
Br-	4.20	
HCO ₃ -	0.14	
F [_]	1.0	I^- , SO ₄ ²⁻ , CO ₃ ²⁻ , NO ₂ ⁻ , NO ₂ ⁻ , NO ₃ ⁻ не обнаружены
Ећ, мВ	350	
Сухой остаток	2.10	
Нейтральные битумы	2.1	Экстракция в хлороформ при рН 7, взвешивание воздушно-сухого остатка после отгонки экстрагента
Кислые битумы	1.5	Экстракция в хлороформ при рН 3, взвешивание воздушно-сухого остатка после отгонки экстрагента
Гуминовые кислоты	990.0	Осаждение серной кислотой при pH 2, взвешивание воздушно-сухого остатка после отгонки экстрагента
ХПК минеральной воды, мг О/л	1040-1060	
ХПК раствора после осаждения ГК при рН 2, мг О/л	5.0	Расчётная оценка содержания ФК по данным ХПК – 4.0 мг/л

Состав минеральной воды скважины 37РЭ г. Салехард, рН 7.8 (методики анализа приведены в [21])

типичным представителем гуминовых кислот, коллоидно-химические свойства которых усиливаются с увеличением концентрации ГК [26-30]. На рис. 3, 4 показаны спектры поглощения нейтральных растворов ГК различной степени разбавления, а также оптические спектры кислых фильтратов, выделенных после осаждения ГК из минеральной воды при рН 1.8. В состав фильтратов, по данным таблицы, входят ФК и в меньшей степени нейтральные и кислые битумы. На рис. 5 приведены зависимости эмпирических коэффициентов адсорбции $(E_2/E_3, E_4/E_6)$, рассчитанные нами из спектральных характеристик ГК минеральной воды (рН 7.8) по методике [26], в сравнении с аналогичными данными для ГК почвенного происхождения [28]. Коэффициент E_2/E_3 представляет собой отношение адсорбции на длинах волн 250 и 365 нм и характеризует степень гумификации и величину молекулярной массы ГК ([26] и ссылки в этой работе). Коэффициент E_4/E_6 – индекс гумификации – вычисляют как отношение адсорбции на длинах волн 465 нм и 665 нм и интерпретируют аналогично коэффициенту E_2/E_3 . Из приведённых на рис. 5

РАДИОХИМИЯ том 62 № 1 2020

экспериментальных зависимостей видно, что оба коэффициента адсорбции качественно характеризуют одну и ту же тенденцию к уменьшению с ростом концентрации ГК. Такое изменение говорит об увеличении молекулярной массы макромолекул с ростом концентрации ГК. Подобие оптических спектров сравниваемых типов ГК позволяет заключить, что исследуемые нами ГК обладают относительно более высокой степенью полимеризации, которая понижается при разбавлении растворов ГК (рис. 5). С ростом концентрации ГК оптическая плотность растворов возрастает, занимая весь оптический диапазон при концентрации ГК 900 мг/л и более (рис. 3). Соблюдение закона Бугера-Ламберта-Бера как для нейтральных растворов ГК, так и для растворов органических соединений, остающихся после кислотного осаждения ГК (по определению растворимые в кислоте формы гуматов являются фульвокислотами, ФК), показывает близость оптических и коллоидно-химических свойств исследуемых нами растворов как к свойствам истинных растворов высокомолекулярных соединений (рис. 3, 4, 6), так и к свой-

Рис. 5. Сравнение коэффициентов абсорбции $(E_2/E_3, E_4/E_6)$, вычисленных из спектральных характеристик природной минеральной воды с ГК при pH 7.8. а: E_2/E_3 – отношение абсорбции на длинах волн 250 и 365 нм, б: E_4/E_6 – отношение абсорбции на длинах волн 465 и 665 нм – результаты данной работы (эксперимент); символы NaOH + HCl, NaCl, NaOH обозначают технику выделения фульвокислот из почв различными методами по данным работы [26].

_

ствам коллоидных растворов. В пользу правильности отнесения высокомолекулярных соединений в фильтрате к ФК говорит близость их оптических спектров к спектрам некоторых типов ФК, выделенных из почв и грунтовых вод (рис. 5) [31, 32]. Данные рис. 5а согласуются с результатами экспериментального определения коллоидно-химических свойств минеральной воды с ГК. С ростом концентрации в растворе в диапазоне 10-500 мг/л коллоидное состояние частиц ГК изменяется незначительно: по данным светорассеяния средний размер увеличивается от 15 до 20 нм, а С-потенциал сохраняет величину -30 мВ. При достижении концентрации 500 мг ГК/л заряд некоторой части коллоидных частиц скачком повышается до -10 мВ, вероятно, за счёт одновременно происходящей контактной коагуляции и агрегирования (полимеризации) [10].

В отличие от природных растворов ГК темно-коричневого цвета фильтраты, выделенные после осаждения ГК при рН 1.5–2, прозрачны и бесцветны в видимой области спектра и по характеру спектра поглощения подобны некоторым типам фульвокислот [26, 29]. Вместе с тем, их оптические спектры в УФ области имею полосу поглощения с максимумом при 211±20 и плечом при 264±30 нм (рис. 4). Взаимодействие с светом макромолекул/коллоидных частиц описывается законом Бугера–Ламберта–Бера. В частности, линейная корреляция между оптической плотностью на длине волны 220 нм, D(220 нм), фильтратов и относительной концентрацией гуматного раствора перед осаждением ГК, выраженная в виде отношения [ГК]/[ГК]_{max}, где [ГК]_{max} – максимальная концентрация ГК в экспериментах, равная 990 мг/л, описывается уравнением

$$D(220 \text{ нм})$$

= (0.417±0.047) + (1.036±0.106)[ГК]/[ГК]_{max}, (5)

с коэффициентом корреляции R = 0.950, стандартной погрешностью линеаризации 0.090. Рассеяние погрешностей подчиняется нормальному распределению, вероятность отсутствия ошибки первого рода для уровня значимости $\alpha = 0.050$ составляет 0.980. Принимая, что оптическая плотность пропорциональна концентрации макромолекул фульвокислот [ФК]

$$D(220 \text{ HM}) = \varepsilon(\text{FA})[\Phi \text{K}], \qquad (6)$$

где є(ФК) – коэффициент поглощения фульвокислот на длине волны 220 нм (отн. ед.), из сравнения уравнений (5) и (6) видим, что отношение [ФК]/ [ГК] является постоянной величиной, характеризующей содержание ФК над осадком ГК при рН 1.5–2. Это позволяет использовать в уравнении (4) вместо неизвестной нам концентрации ФК в рас-

Рис. 6. Пример изотерм сорбции–соосаждения микроэлементов с ГК по результатам численного анализа модели (2)–(4), (7) и по данным рис. 2 в координатах уравнения (7). Цифры у кривых – относительная величина коэффициента $K_1(M, Ca)$ в уравнении (7). (а) – общий вид зависимости Kd(M,Ca) от концентрации [ГК] в раствора по (7). Экспериментальные изотермы, для которых производная $P = d[K_d(M,Ca)]/d([ГК]) < 0$ (б), или P > 0 (в).

творе над осадком [ФК] начальную концентрацию ГК [ГК]

$$K_{\rm d}({\rm M,Ca}) = K_1({\rm M,Ca})[1 + \beta({\rm Ca})][(\Gamma{\rm K})]/(1 + \beta({\rm M})][(\Gamma{\rm K})].$$
(7)

Модель (2)–(4), (7) предполагает три типа взаимосвязи между концентрацией гуминовой кислоты [ГК] в растворе и соотношением коэффициентов распределения ионов-конкурентов (рис. 6а). При сравнении результатов численного моделирования с экспериментальными изотермами сорбции видно, что с ростом [ГК] величина K_d (M,Ca) может уменьшаться (ионы Na, K, Mg, Sr, Al, Bi), расти (Pb, Th, U, La, P3M), или оставаться постоянной (THO, Ca) (рис. 6б, в). Результаты обработки изотерм соосаждения (рис. 2) в координатах уравнения (7) обнаруживают все возможные типы соотношений

РАДИОХИМИЯ том 62 № 1 2020

среди полученных изотерм сорбции. При сравнении коэффициентов распределения (рис. 2) и коэффициентов селективности (7) (рис. 6), можно сделать вывод о высокой общей сорбционной специфичности осадков ГК к катионам-аналогам радионуклидов – продуктов коррозии, деления и активации, а также о возможности эффективной дезактивации растворов соосаждением с природными ГК.

Формирование осадка ГК связано с протонированием обменных центров кислотного характера, поэтому можно ожидать, что соосаждение микроэлементов будет сопровождаться изотопообменным поглощением свежеосаждёнными осадками тяжёлых изотопов водорода. Это предположение подтверждается сорбционным поведением трития (НТО) в виде тритированной воды при его

Рис. 7. Найденные из экспериментальных данных по модели (2)–(4) соотношения коэффициентов распределения $K_d(M)/K_d(Ca)$ и концентрационные константы комплексообразования микроэлементов с продуктом кислотного растворения ГК [$\beta(M)$, отн. ед.] в фильтрате над осадком ГК; pH фильтрата 1.8, 23°С. Меап – среднее значение для всей выборки. (a) – группа катионов с $lg\beta(M) = (-2\pm1)$; (б) – группа катионов с $lg\beta(M) = -(8\pm3)$.

соосаждении с ГК (рис. 2, 6). Формальный К_d трития характеризует высокую степень гетерогенного изотопного обмена тритий-протий. Как видно из рис. 2, тритий способен сорбироваться протонированной формой ГК с относительно высоким K_d, в особенности при низких концентрациях катиона-конкурента Ca(II). Увеличение концентрации последнего совместно с концентрацией самой ГК подавляет изотопообменное поглощение. Установленный факт изотопного обогащения тритием гуминовых кислот, вероятно, позволит по-новому оценить влияние солевого состава вод пресноводных водоёмов, содержащих гумусовые вещества, на сезонные вариации концентрации трития в них [23, 33]. На сорбцию трития помимо отмеченной зависимости K_d от концентрации ГК существенно влияет ряд других параметров состояния водной среды и степени равновесности всей изотопообменной сорбционной системы, что предполагается более детально рассмотреть в дальнейшем.

Согласно полученным результатам, концентрационная константа образования несорбирующегося комплекса М(ФК) β (М) относительно мала для практически всех рассмотренных катионов. Молекулярная масса фульвокислот нам неизвестна, но их массовая концентрация может быть оценена в предположении, что и молекулы ГК и ФК обладают на длине волны 220 нм близкими коэффициентами поглощения, ε (ФК) = ε (ГК). Это даёт диапазон наблюдаемых концентраций [ФК] ~ 0.1– 10 мг/л, близкий к данным химического анализа (см. таблицу).

По величине $\beta(M)$ рассмотренные элементы можно условно разделить на две группы: образующих относительно устойчивые комплексы с $-lg\beta(M) \sim 2\pm 1$ (K, Mg, Sr, Mn, Fe, Ni, Co, T, Ti) и не образующие устойчивых комплексов с $-lg\beta(M) \sim 8\pm 3$ (Al, Cu, Zn, Ba, La, P3M, Bi, Pb, Th, U) (рис. 7). Для ионов кальция(II) величина $lg\beta(Ca) =$ 1.30 ± 0.30 при оценивании по обеим группам катионов. Результаты моделирования характеризуются *F*-статистикой в диапазоне 10–400, что позволяет считать модель (2)–(4), (7) удовлетворительной при описании сорбционного поведения катионов при соосаждении с ГК.

Таким образов, исследование характера изотерм сорбции катионов (М) природными гуминовыми кислотами (ГК) показывает, что зависимость $K_{\rm d}$ от отношения массы к объёму раствора ГК в области концентраций ГК 10-990 мг/л объясняется протеканием в сорбционной системе двух параллельных процессов: конкурентной сорбции ионов М и Ca(II) осадком ГК и образования несорбирующегося ($K_d < 10$ мл/г) комплекса между ионом М и лигандами (предположительно фульвокислотами). Эти лиганды сопутствуют ГК в минеральной воде и остаются в растворе с рН 1-3 после осаждения ГК. Такой вывод подтверждают данные оптической спектроскопии растворов ГК и растворов над осадком ГК. Согласно этим данным, в растворе присутствуют высокомолекулярные органические

соединения, обладающие оптически активными группами с максимумом поглощения при 211±20 нм и плечом при 269±30 нм, что характерно для некоторых типов фульвокислот. Предложена вероятная схема взаимодействия катионов сорбата с продуктами кислотного растворения ГК. Впервые установлена возможность изотопообменного выделения трития (THO) из водных растворов осадками ГК.

Работа является частью планов фундаментальных исследований ИХТТ УрО РАН и выполнена при поддержке РФФИ, проект № 18-03-00051.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Чувелёва Э.А., Чмутов К.В., Назаров П.П. // ЖФХ. 1962. Т. 36, № 4. С. 830.
- 2. Варшал Г.М., Велюханова Т.К., Кощеева И.Я. // Гуминовые вещества в биосфере. М.: Наука, 1993. С. 97.
- Орлов Д.С. Гумусовые кислоты почв и общая теория гумификации. М.: МГУ, 1990. С. 325.
- Перминова И.П. Анализ, классификация и прогноз свойств гумусовых кислот: дис. ... д.х.н. М.: МГУ, 2000. 359 с.
- Bergelin A. Acid–base properties and aggregation of humic materials, Dissertation Abstract Int., 0488— Chemistry, Inorganic. Stockholm: Kungliga Tekniska Hogskolan (Sweden)/Royal Inst. of Technology, 2001. SE-100 44
- Davis C.J., Eschenazi E., Papadopulos K.D. // Colloid Polym. Sci. 2002. Vol. 280. P. 52.
- Fukushima M., Tanaka S., Nakamura H., Ito S. // Talanta. 1996. Vol. 43. P. 383.
- Nash K., Frled Sh., Friedman A.M., Sulllvan J.C. // Environ. Sci. Technol. 1981. Vol. 15, N 7. P. 834.
- 9. Kemdorff H., Schnitzer M. // Geochim. Cosmochim. Acta. 1980. Vol. 44. P. 1701.
- 10. Поляков Е.В., Волков И.В., Хлебников Н.А. // Радиохимия. 2015. Т. 57, № 2. С. 140.
- Поляков Е.В. // VII Рос. конф. «Радиохимия-2012»: Тез. докл. Димитровград: ВДВ ПАК, 2012. С. 343.
- Горяченкова Т.А., Казинская И.Е., Рылеева В.С., Абрамова А.В., Новиков А.П. // Радиохимия. 2013. Т. 55, № 6. С. 553.
- Twardowska I., Kyziol J. // Environ. Int. 2003. Vol. 28. P. 783.
- 14. Kostić I. S., Anđelković T.D., Nikolić R.S. et al. // Hem.

РАДИОХИМИЯ том 62 № 1 2020

Ind. 2013. Vol. 67, N 5. P. 773.

- Cujic M., Petrovic J., Dragovic S. // Remediation Measurements for Radioactively Contaminated Areas / Eds A. Voronina, D. K. Gupta. Springer, 2018. P. 1.
- Paulenova A., Rajec P., Zemberyova M. et al. // J. Radioanal. Nucl. Chem. 2000. Vol. 246, N 3. P. 623.
- 17. *Поляков Е.В.* // Радиохимия. 2007. Т. 49, № 4. С. 378.
- Волков И.В., Поляков Е.В., Денисов Е.И., Иошин А.А. // Радиохимия. 2017. Т. 59, № 1. С. 63–70.
- Старик Е.И. Основы радиохимии. Л.: Наука, 1969.
 2-е изд. С. 647.
- Накамото К. Инфракрасные спектры неорганических и координационных соединений. М.: Мир, 1966. С. 412.
- Жернакова З.М. Исследование ионного состава, органических веществ подземной воды скважины 36-РЭ и проведение биологических исследований: Отчет о НИР. Екатеринбург: Екатеринбургский МНЦ, 1992. С. 1.
- 22. Поляков Е.В., Волков И.В., Хлебников Н.А., Иошин А.А. // ХХ Менделеевский съезд по общей и прикладной химии: Тез. докл.. Екатеринбург: УрО РАН, 2016. Т. 5. С. 214.
- 23. Трапезников А.В., Чеботина М.Я., Трапезникова В.Н., Гусева В.П., Николин О.А. Влияние АЭС на радиоэкологическое состояние водоема-охладителя / Под ред. И. М. Донника. Екатеринбург: Академ Наука, 2008. 400 с.
- 24. Попов И.А. Гуминовые вещества: свойства, строение, образование / Под ред. Е. И. Ермакова. СПб.: Изд-во С.-Петерб. ун-та, 2004. 248 с.
- 25. Егоров Ю.В. Статика сорбции микрокомпонетов оксигидратами. М.: Атомиздат, 1975. С. 275.
- Klucakova M., Veznikova K. // J. Mol. Struct. 2017. Vol. 1144. P. 33.
- Swiech W.M., Hamerton I., Huang Zeng et al. // J. Colloid Interface Sci. 2017. Vol. 508. P. 28.
- Doskočil L., Pekař V.M., Wasserbauer J. // Org. Geochem. 2016. Vol. 95. P. 34.
- Minghao Zhou, Fangang Meng // Water Res. 2015. Vol. 87. P. 311.
- Ненахов Д.В., Котов В.В., Стекольников К.Е. // Сорбционные и хроматографические процессы. 2009. Т. 9, № 5. С. 665.
- Kalbitz K., Gever W., Gever S. // Biogeochemistry. 1999. Vol. 47. P. 219.
- Litvin V.A., Minaev B.F., Baryshnikov G.V. // J. Mol. Struct. 2015. Vol. 1086. P. 25.
- Поляков Е.В., Емельянова Н.Н., Суриков В.Т., Ильвес Г.Н. // Радиохимия. 2003. Т. 45, № 1. С. 45.