ЭКОЛОГИЧЕСКАЯ, ПРОМЫШЛЕННАЯ И ЭНЕРГЕТИЧЕСКАЯ БЕЗОПАСНОСТЬ – 2017

сборник статей научно-практической конференции с международным участием
11 – 15 сентября 2017 г.

Севастополь, 2017.
«ЭКОЛОГИЧЕСКАЯ, ПРОМЫШЛЕННАЯ И ЭНЕРГЕТИЧЕСКАЯ БЕЗОПАСНОСТЬ — 2017»

higher biological activities in soils, self-purification of the environment and natural attenuation in Fukushima is essentially faster than in Chernobyl.

УДК 574.4:502.175:621.039.7(470.54)

КОНЦЕПТУАЛЬНЫЕ ПОДХОДЫ К ОРГАНИЗАЦИИ РАДИОЭКОЛОГИЧЕСКОГО МОНИТОРИНГА НАЗЕМНЫХ ЭКОСИСТЕМ В ЗОНЕ ВЛИЯНИЯ БЕЛОЯРСКОЙ АТОМНОЙ ЭЛЕКТРОСТАНЦИИ

А.В. Кожаровин, к.в.н., с.н.с., В.Н. Трапезникова, к.б.н., с.н.с., А.В. Трапезников, д.б.н.;
зав. лабораторией, Л.Н. Михайловская, к.б.н., ст. научный сотрудник

Федеральное государственное бюджетное учреждение науки «Институт экологии растений и животных Уральского отделения Российской академии наук», г. Екатеринбург, РФ, e-mail: BFSzar@mail.ru

В Уральском регионе одним из крупных ядерных объектов является Белоярская атомная электростанция им. И.В. Курчатова (БАЭС). Первая очередь БАЭС состояла из двух энергоблоков с водогреутным реакторами, введенными в эксплуатацию в 1964 и 1967 гг., а к 1989 году они были выведены из эксплуатации. Вторая очередь включает энергоблок на быстрых нейтронах БН-600, который был пущен в 1980 г. и эксплуатируется до настоящего времени. В 2016 году введен в эксплуатацию четвертый энергоблок на быстрых нейтронах БН-800, который к настоящему времени введен в проектную мощность. Сотрудники Отдела континентальной радиоэкологии ИЭРНЖ с 1978 года проводили комплексные радиоэкологические исследования в 30-км зоне Белоярской АЭС (БАЭС) в разные периоды её работы (Трапезников и др., 2007).

Белоярская АЭС работает в штатном режиме более 50 лет. За этот период на промплощадке эксплуатировались энергоблоки разных типов, изменялись нормы штатных сбросов и технологии их очистки. Несовершенство технологий, используемых на ранних этапах эксплуатации станции, привело к образованию локальных участков с высоким уровнем содержания радионуклидов, служащих в настоящее время источником вторичного загрязнения окружающей среды.

Цель наших исследований — создание системы радиоэкологического мониторинга, позволяющей изучать влияние БАЭС на загрязнение окружающей среды долгоживущими радионуклидами и основные закономерности пространственного распределения в почвенно-растительном покрове наблюдаемой зоны.

Концептуальный подход к организации радиоэкологического мониторинга основан на многолетних исследованиях, выясняющих уровень содержания радионуклидов в среде обитания, динамику миграционных процессов в зонах загрязнения и факторы, определяющие изменение. При разработке общей концепции организации радиоэкологического мониторинга в районе БАЭС, учитывали пути поступления и набор загрязнителей, среди которых наиболее внимание уделялось долгоживущим дозообразующим радионуклидам (137Cs, 238Pu).

Разработанная система мониторинга включает несколько этапов:

1. Изучение ландшафтно-географических, климатических и социально-экономических особенностей региона. Анализ структуры земельных угодий в пределах наблюдаемой зоны Белоярской АЭС (БАЭС), типового разнообразия и физико-химических свойств почв, ботанического описания обследуемых природно-территориальных комплексов, с выделением наиболее распространенных типов экосистем и видового разнообразия растений. Повышение внимание следует обращать на селитебные территории. Высокая антропогенная нагрузка на них сооружение и эксплуатация крупных промышленных объектов неизбежно влечет за собой изменение состояния и свойств основных компонентов окружающей среды.

2. Слежение за содержанием загрязнителей в различных объектах окружающей среды: природных водах, снеге и почвенно-растительном покрове, которые играют роль...
природных планшетов. Снежный покров аккумулирует газообразные выделения АЭС в осенне-зимний период, почвенный - даёт интегральную характеристику радиоактивного загрязнения, а отдельные виды растений, благодаря их высокой аккумулирующей способности, являются индикаторами радиоактивного загрязнения естественных экосистем.

3. Изучение миграционных процессов в зонах загрязнения необходимо для прогнозирования развития радиоэкологической ситуации на территории загрязненной техногенными радионуклидами. Применение классических методов радиоэкологических и геохимических исследований, в частности метода ландшафтного профилирования, позволяет выявить на территории зоны аккумулирования или рассеяния радионуклидов, изучить барьерные функции подземных почв. Изучение биогенной миграции и геохимической функции различных компонентов наземных экосистем позволяет оценить масштабы влияния БАЭС на прилегающие территории. Оценка физико-химического состояния радионуклидов в почвах, анализ временной динамики параметров радиоактивного загрязнения позволяет получить сведения о скорости и направленности миграционных процессов в почвенно-растительном покрове наблюдаемой зоны БАЭС.

4. Оценка вклада БАЭС в радиоактивное загрязнение почвенно-растительного покрова. Определенные трудности в решении этой задачи создает сложная радиоэкологическая обстановка в регионе. В формировании загрязнения почв в зоне БАЭС, как и в других регионах, фона, принимали участие глобальные радиоактивные выпадения из атмосферы и выбросы предприятий ПО «Маяк». Свой вклад вносили близко расположенные территории ВУРС и Чернобыльские выпадения. Поэтому для оценки вклада штатных выбросов БАЭС в загрязнение территории 90Sr и 137Cs, как правило, применяется сравнение с фоновыми уровнями загрязнения сопредельных территорий. В таком случае, вероятность ошибки в оценке вклада штатных выбросов БАЭС в загрязнение территории 90Sr и 137Cs, как правило, не превышает 30% (Михайлова, 2007).

В районе БАЭС газообразные выбросы через воздушный бассейн поступают на поверхность водотоков и почвенно-растительного покрова всей наблюдаемой зоны БАЭС, в том числе находящихся вблизи населенных пунктов. В ходе выполнения поставленных задач, учтивая, что зона наблюдения БАЭС в настоящее время ограничена радиусом 13 км, радиус обследуемой территории ограничен 15 км, которую условно разделили анизотропными линиями на 8 секторов, ориентированных по сторонам света (рис. 1). В каждом из выделенных анизотропных секторов, на разных расстояниях от БАЭС для проведения долговременных наблюдений выбраны стационарные участки приуроченные, как правило, к лесным экосистемам, которые занимают около 85% территории. Наиболее крупный из них муниципальное образование (МО) г. Заречный, включающий одноименный город энергетиков и несколько окрестных деревень с общим населением около 30 тыс. человек. В связи с этим сельская территория выделена как самостоятельный объект мониторинговых исследований. Для отбора проб почв на окраине города энергетиков и на пахотных угодьях сельской территории выбраны стационарные участки, местоположение которых ориентировано по сторонам света.

Зона влияния жидких сбросов БАЭС ограничивается Ольховским болотом и участками водосбора-охладителя (зарегулированное русло р. Пышма) приуроченными к местам сброса технологических вод атомной станции. Радиоэкологические исследования проводятся на территории наземных и водных экосистем, на основании проведенных исследований можно отметить особенности Ольховской болотно-речной экосистемы, включая стационарные участки, расположенные вблизи проливных каналов и болотных зон. В настоящее время в данных оценках радиоактивность болота в среднем составляет 3,7·10^12 Бк/м², что позволяет отнести Ольховское болото к высокому классу загрязнения. В стационарных участках изучение влияния радиоактивных загрязнений проводится с помощью мониторинговых исследований. Эти участки включают в себя стационарный участок БАЭС и, как источник вторичного загрязнения, стали объектом мониторинга, требующим повышенного внимания.

Стационарные участки для проведения мониторинговых исследований располагались по периметру береговой зоны болота и вдоль расстояния от места сброса. Изучение влияния загрязнений проводилось с помощью мониторинговых исследований. Эти участки включали в себя стационарный участок БАЭС и, как источник вторичного загрязнения, стали объектом мониторинга, требующим повышенного внимания.

Кроме того, на территории болота и за его границами, в районе расположены отдельные участки, включая стационарные участки, расположенные вблизи проливных каналов и болотных зон. В настоящее время в данных оценках радиоактивность болота в среднем составляет 3,7·10^12 Бк/м², что позволяет отнести Ольховское болото к высокому классу загрязнения. В стационарных участках изучение влияния радиоактивных загрязнений проводится с помощью мониторинговых исследований. Эти участки включали в себя стационарный участок БАЭС и, как источник вторичного загрязнения, стали объектом мониторинга, требующим повышенного внимания.

...
«ЭКОЛОГИЧЕСКАЯ, ПРОМЫШЛЕННАЯ И ЭНЕРГЕТИЧЕСКАЯ БЕЗОПАСНОСТЬ – 2017»

пределами были заложены четыре геохимических профиля для проведения ландшафтных геохимических исследований.

Рис. 1. Карта-схема обследуемой территории.

Методика отбора проб окружающей среды, использованная в ходе радиоэкологических исследований изложена в работах (Молчанова и др., 2006; Трапезников и др., 2007).

Пробы снега отбирали в пределах 3-км зоны в конце периода снеготаяния. В ходе обследования зоны влияния газоэрозионных выбросов пробы почвы отбирали на стационарных участках 15-км зоны и на селитебной территории. При изъятии проб почвы составляли среднюю пробу из 5-ти образцов, которые отбирали по методу конверта по углам и на пересечении диагоналей. Такой конверт имеет площадь 100 - 400 м² и представительно описывает территорию от 0.05 до 0.10 км². Подобный подход был применён при проведении радиационного мониторинга агропромышленного комплекса (Сельскохозяйственная радиоэкология, 1991). При необходимости берут большее количество проб в ячейках меньшей площадью, например, по углам равностороннего треугольника с длиной стороны 10 м. Усредненная (из 3-х) проба в этом случае представительно характеризует площадь 0,01 км². Отбор проб почвы проводили 5-см слоями до глубины 30 см с выделением лесной подстилки. Дополнительные отложения рек и болота, пробы пойменных гидроморфных почв отбирали на стационарных участках в 3-х повторностях до глубины 50 см и более с учетом площади. В непосредственной близости от почвенных разрезов отбирали образцы растений.

В Ольховском болоте и реках наблюдаемой зоны БАЭС отбирали пробы воды объемом 120 л.

Из всех проб ⁸⁵Sr и ⁹⁰⁹⁰Ru выделяли радиохимическим способом. β-активность препаратов измеряли на радиометре «УМФ-2000» (Россия), предел обнаружения 0.2 Бк.

Определение изотопов Ru – на моноканалном γ-спектрометре «Ortec» (США) с поверхностно-барьерными детекторами, программным обеспечением «Alpha Vision-32», пределом обнаружения 0.001 Бк. Содержание ¹³⁷Cs определяли на низкоэффективном полупроводниковом гамма-спектрометре рентгеновского и гамма-излучения «DSPTC-jr» фирмы «Ortec» (США) с коаксиальной детекторной системой на базе высокоочищенного германия (HPGe), эффективностью 40%, пределом обнаружения 0.1 Бк.

Список литературы:
1. Миграция радионуклидов в пресноводных и наземных экосистемах / А.В. Трапезников, И.В. Молчанова, Е.Н. Карашева, В.Н. Трапезникова. Т. Н. Екатеринбург: Изд-во Уральского ун-та, 2007. 400 с.

-659-
THE CONCEPTUAL APPROACHES TO THE ORGANIZATION OF THE GROUND ECOSYSTEMS RADIOECOLOGICAL MONITORING IN THE BELOYARSKAYA NUCLEAR POWER PLANT ZONE OF INFLUENCE

A.V. Korkhavin, V.N. Trapeznikova, A.V. Trapeznikov, L.N. Mikhailovskaya
Federal State budget science establishment Institute of Plant and Animal Ecology, Russian Academy of Science, Ural branch Ekaterinburg, RF, e-mail: BFS_zar@mail.ru

Abstract.
When developing a general concept for the radioecological monitoring organization in the area of the Belyarskaya NPP, a set of pollutants, their routes of arrival, landscape-geographical and socio-economic characteristics of the region were taken into account. The monitoring system for the gas and aerosol emissions involves the long-lived dose-forming radionuclides (238U, 137Cs, 90Sr) tracing in the environment objects, playing the role of natural plates. These include snow and soil-vegetation covers, the surface of open water bodies.

УДК 631.147:631.811.98
АСПЕКТЫ ИСПОЛЬЗОВАНИЯ ГУМИНОВЫХ ПРЕПАРАТОВ В ЭКОЛОГИЗИРОВАННЫХ ТЕХНОЛОГИЯХ ВОЗДЕЛЬВАНИЯ СЕЛЬСКОХОЗЯЙСТВЕННЫХ КУЛЬТУР

O.C. Korush, к.с.-х.н., доцент
Гродненский государственный аграрный университет, г. Гродно, Беларусь, e-mail: korunb@mail.ru

В настоящее время в растениеводстве актуальным является применение в технологиях возделывания сельскохозяйственных культур биологических факторов повышения урожайности – современных препаратов биологической природы, в том числе гуминовых препаратов. К гуминовым препаратам относятся Оксигумат, Гидрогумат и др., которые получают путем химической переработки торфа по новым технологиям (Титов, 2017). Разработчик таких препаратов – институт природопользования НАН Беларуси.

Экологически чистым агротехническим приемом возделывания сельскохозяйственных культур можно считать применение эффективного удобрения биогумуса или вермимкомост, источником которого является вермикультура. Биогумус (4-5 т/га) используют в качестве органического удобрения под озимые и яровые зерновые культуры. На дерново-подзолистой супесчаной почве применение вермикомоста в дозе 15 т/га обеспечивает прибавку урожайности всех сельскохозяйственных культур (Бирюкова, 2013).

В институте биоресурсов НАН Беларуси получено экологически чистое органическое удобрение жидкий биогумус – концентрированная вытяжка из натурального биогумуса. Этот препарат применяют для замачивания семян и обработки вегетирующих растений.

Использование биологических препаратов является экономически оправданным приемом в ресурсосберегающих технологиях возделывания проса, яровой пшеницы и ячменя (Картова, 2009). Определенный интерес представляет изучение этих препаратов также на крупняк культуре гречке и просовидной – пайке или японским просом.

Поэтому актуальность исследований по изучению влияния обработки растений растворами препаратов оксигумата, гидрогумата, оксидата торфа, жидкого биогумуса и