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Abstract—The annual f lux of carbon dioxide from soils across different biomes plays a key role in global cli-
mate models and terrestrial carbon cycle analysis. However, there are significant gaps in such research at a
regional scale. Due to the high labor intensity of obtaining daily soil respiration indicators, various modeling
methods are used. In this work, based on 2760 measurements of soil respiration in spruce forests of the Ural-
Carbon carbon supersite (Middle Urals), carried out in the fall of 2021 and from April to October 2022, using
classical regression approaches and machine learning, annual soil respiration indicators were estimated. We
also investigated the dependence of the results on the complexity of the model (number of predictors) and the
methods used (random forest model extrapolation and combined approaches for estimating winter CO2
fluxes). The “simplified” model with seven predictors showed only a slight decrease in accuracy compared to
the full model with 21 predictors (R2 = 0.89, MSE = 0.22 vs. R2 = 0.92, MSE = 0.31). Remote sensing-based
predictors contributed more to model accuracy than field data. While initial results varied across meth-
ods, incorporating literature-based winter respiration values into the random forest model and averaging
combined-approach estimates yielded consistent annual soil respiration values: 830.3 ± 6.4 and 851.6 ±
8.0 g C/m2 year, respectively.

Keywords: CO2 emissions, carbon cycle, machine learning, forest ecosystems, carbon supersites, environ-
mental factors
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INTRODUCTION
Accurate estimates of climate-active gas f luxes are

important for analyzing and predicting changes in the
carbon cycle [1]. The magnitude of these f lows can
vary considerably depending on the type of landscape.
However, for many regions of Russia there is still no
data on annual carbon dioxide emissions.

To assess carbon dioxide emissions from soil, two
main methods are used: chamber and, indirectly, the
eddy covariance method. The chamber method allows
measurements to be made on a larger scale, but it does
not provide daily data coverage throughout the year,
especially when using non-stationary chambers. An
additional challenge is estimating winter carbon diox-
ide emissions, which can reach a quarter of the annual
volume [2].

To address data scarcity, mathematical modeling is
used. Transitioning from discrete measurements to
annual f lux estimates involves both traditional regres-
sion models and machine learning methods. Among

these, the Random Forest (RF) algorithm outper-
forms classical regression and neural networks in
accuracy. However, machine learning models often
incorporate an excessive number of predictors, reduc-
ing interpretability. Thus, developing simple yet highly
accurate models remains a priority.

A key limitation of the RF algorithm is its poor
extrapolation capability beyond the training data
range—particularly for winter measurements, which
are often unavailable. To solve this problem, models
are proposed that calculate the annual f low based on
data from the warm period of the year [3, 4]. Such
models, based on classical regression approaches,
demonstrate high coefficients of determination (0.81–
0.95), but they were created on different data sets, and
we did not find comparative studies of their perfor-
mance conducted on the same data.

Thus, on the one hand, there is a pressing problem
of obtaining estimates of annual greenhouse gas f luxes
from soils of different biomes, and on the other hand,
217



218 SMORKALOV
there is the problem of the lack of complete data series
throughout the year and different ways of solving it.
Therefore, the goal of our work is to estimate the
amount of annual CO2 emissions using different
approaches (including machine learning) from the soil
of spruce forests of the Ural-Carbon carbon supersite
(Middle Urals) in 2022.

MATERIAL AND METHODS
Research Area

In order to establish a monitoring system and
obtain adequate estimates of greenhouse gas f lows in
the country, two federal projects for monitoring the
carbon balance were launched: Carbon Supersites and
the Key Innovative Project of National Importance
“The national system for monitoring the dynamics of
climatically active substances in terrestrial ecosystems
of the Russian Federation.” A program to create a car-
bon supersites network was launched in 2021. Each
supersite is a area with a relief, vegetation, and soil
cover characteristic of the region. These sites are
intended for conducting scientific research, develop-
ing infrastructure, and testing technologies for moni-
toring the balance of climate-active gases in natural
ecosystems [5]. The Ural-Carbon carbon supersite is
located in the Sverdlovsk region and consists of two
areas located on opposite slopes of the Urals (western
and eastern) and including forests typical for these
macroslopes (spruce and pine, respectively). The
study area (coordinates of the center 57.036389° N,
59.552222° E) is located in the southern taiga, within
the ridge of residual mountains of the axial part of the
Middle Urals and its western slope, on a watershed,
floodplain terrace with a terrace-like slope and a sec-
tion of the Chusovaya river valley. According to phys-
ico-geographical zoning, this territory belongs to the
Middle Urals low-mountain region dominated by
dark coniferous forests, with soils including sod-
podzolic, mountain brown forest, and sod-meadow
types [6]. The climate of the study area is continental,
moderately cold, and humid. The average air tempera-
ture is 0.3°C, snow cover is established in late Octo-
ber–early November and thaws by mid-April; the
average length of the growing season is 109 days (from
May 20 to September 7) [7].

Experimental Design
The research was conducted in mature dark conif-

erous forests (80--110 years old) dominated by spruce
(60%) and fir (30%), with minor components of pine
(10%), birch, and larch [8]. In the study area selected
three clusters (Fig. 1). Each cluster contained two sites
positioned at different terrace levels along the river-
bank–upper and lower terraces with an elevation dif-
ference of 25–27 m. On each site, three sample plots
(Plot) of 5 × (15–20) m (65–100 m2) were established,
extending in different directions from the relative cen-
RUSSI
ter of the site. A total of 18 sample plots were estab-
lished, in each of which measurements were taken at
10 random points. The points were no closer than 1 m
from large tree trunks and avoided the gaps of the tree
stand [9].

Emission measurements were conducted three
times in 2021 (August 26 (only 1 cluster), September
22 and October 12) and 13 times from May 18 to
November 1, 2022, every 10–16 days (mostly 14 days).
A total of 16 rounds of measurements were conducted.
In each round, work was carried out between 9:00 and
17:00. To minimize diurnal variation effects, we ran-
domized the site visitation order across measurement
rounds. A total of 2760 measurements were carried out
(10 measurements on each of the 18 sample plots for 15
complete rounds (one incomplete)).

CO2 Emission Measurement

CO2 flow rate from the soil surface was measured
using a closed dynamic chamber method [10] using a
Li-8100A field gas analyzer (Li-Cor biosciences,
United States). Then, 5–10 min before the measure-
ment, stainless steel rings with a diameter of 10.5 cm
and a height of 5 cm were installed and buried 3 cm
into the soil; the green parts of the plants were precut.
Next, the device’s camera was placed on the ring. The
time of one measurement was 1 min.

At the same time, the soil temperature was mea-
sured using an Omega 88311E soil temperature probe,
included in the respirometer kit, with an accuracy of
0.1°С (OMEGA Engineering, United Kingdom), and
the volumetric soil moisture was measured using a
ThetaProbe ML2 sensor (Delta-T devices, United
Kingdom), connected to the gas analyzer control unit,
with an accuracy of 0.1%. Measurements of soil
humidity and temperature were carried out near the
respiration measurement point at a depth of 5 cm. Air
temperature was also measured using a temperature
sensor built into the gas analyzer chamber.

Data Analysis

Statistical processing was performed in the R v 4.1.2
software. In all cases, the statistical unit was considered
to be the sample plot, i.e., the average value of ten
measurements on the sample plot in one round. This
value was used as the daily average, since due to signif-
icant microscale variability in the forest with a large
number of measurement points, the emission deter-
mined at a specific moment did not differ significantly
from the daily average [11].

Data preparation. Predictors measured in-situ and
Earth remote sensing data were used for modeling.
Remote data on soil and air temperature and soil
moisture, as well as NDVI, based on the products of
the MODIS spectrometer from the Terra and Aqua
AN JOURNAL OF ECOLOGY  Vol. 56  No. 3  2025
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Fig. 1. Layout of test plots: Cluster—cluster, Site—area, Plot—sample plot.

Chusovaya River

Cluster

Site

Plot

Kourovka
astronomical  observatory,

named after K.A. Barkhatova

Georgievsky
 Kamien

Sobachie
Rebra

Sloboda0 250 500 750 m
satellites for 2022, were obtained using the VEGA-
Science service [12] (Table 1).

Additionally, the Standardized Precipitation
Evapotranspiration Index (SPEI) [13] from the global
RUSSIAN JOURNAL OF ECOLOGY  Vol. 56  No. 3  2

Table 1. List of predictors used

Predictor Description

Soil temperature Soil temperature at a depth of 5 c
Air temperature Air temperature
Soil moisture Volumetric soil moisture at a dep
Cluster Cluster number
Position Upper or lower terraces
Soil temperature (remote) Soil temperature at a depth of 10
Air temperature (remote) Air temperature
Soil moisture (remote) Soil moisture at a depth of 10 cm
NDVI Normalized differential vegetatio

correlates well with total abovegr
SPEI 1–12 Drought index for 1–12 months

preceding measurements
database (http://spei.csic.es) was used [14]. It shows
how dry the  studied period was relative to the norm
over the past  several decades (in this database – from
1950 to 2022). The index value [–0.99, 0.99] is an
025
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indicator of normal moisture conditions, [1.00,
1.49]/[–1, –1.49] is moderate waterlogging/drought,
>1.50 /<–1.50 is severe waterlogging/drought.

Remote temperature and humidity data were taken
at 6-h intervals. However, these values are the product
of algorithm calculations based on two direct daily sat-
ellite measurements, so we used their daily average
values.

In the case of NDVI, we had a set of values of 1, 4,
and 8-day composite images. Multi-day composite
images are intended to reduce the impact of cloudi-
ness on NDVI determination, but the study area may
have over 200 cloudy days, so there are still gaps in the
data. To obtain a series of daily NDVI values, we filled
in missing data with the average of adjacent values and
then averaged all three series (1, 4, and 8 day). Outside
the growing season (before April 20 and after Septem-
ber 30), due to inadequately strong NDVI fluctuations
(due to a large number of cloudy days), the lowest val-
ues at the boundary of the growing season were used,
which was about 0.69. This is the minimum value that
was in our training set, so values below this did not
affect the result due to the operating principle of deci-
sion trees, on which the RF algorithm is based.

The selection of predictors was carried out using the
“Boruta” package [15] and correlation analysis. This
feature selection method leverages the Random Forest
(RF) algorithm's capability to evaluate variable impor-
tance through an innovative permutation approach.
The algorithm operates by creating multiple shadow
predictors—artificial variables generated by randomly
shuffling the values of each original predictor.
Through iterative model building, the algorithm com-
pares the predictive performance between models
containing genuine predictors and those incorporating
these shadow variables. By systematically evaluating
these differences across numerous iterations, the algo-
rithm calculates standardized Z-scores that quantify
each predictor's statistical significance and relative
importance.

Calculation of annual flows. In the first step, to esti-
mate annual f luxes based on field measurements of
soil respiration using the RF algorithm (“randomFor-
est” package [16]), we created two models: “full”
(using all variables) and “simplified” (only with
selected predictors). Model hyperparameters—
including the number of decision trees and the maxi-
mum features considered for node splitting—were
optimized through a grid search procedure. Model
performance was evaluated using 5-fold cross-valida-
tion implemented in the “caret” package [17], with
validation metrics focusing on the coefficient of deter-

mination (R2) and the mean squared error (MSE)
between predicted and observed values. This dual-
metric assessment ensured robust evaluation of both
predictive accuracy (via R²) and precision (via MSE)
across the dataset.
RUSSI
The resulting models were used to estimate annual
CO2 f luxes from the soil in two ways:

(1) Extrapolation based on daily data on the values
of selected predictors.

(2) A combined approach using a random forest
model and one of two models:

(2.1) A model for calculating annual emissions
based on determining the contribution of soil respira-
tion during the summer period and average annual
temperature [4].

(2.2) A model based on emission calculations for
periods with temperatures above 5°C [3].

When assessing annual f lows, the statistical unit
was the “plot,” i.e., with each method we obtained six
values of annual f lows, which allowed us to assess the
spatial variation of the results.

The annual f lux values from the global Soil Respi-
ration Database v. 5.0 (SRBD) [18]). We selected val-
ues obtained for forests north of 55° N using infrared
gas analyzers (IRGAs): in the entire northern hemi-
sphere (n = 170) and only in Russia (n = 39). To esti-
mate the effect of winter emissions on the calculated
annual f lux, we took winter respiration values from a
study of a spruce forest in Canada [19], because it was
similar in climate and the paper provided a formula by
which we could calculate the emission rate for soil
temperatures of 0, –1, –3, and –5°C (0.13–0.16 g (C–

CO2)/m2 days) (with further decrease in temperature

the indicators did not change). We added these calcu-
lated values to the training set and estimated the
annual f low.

The data on carbon dioxide emission rates, field
temperatures of soil and air, and soil moisture used in
the article are available in the depository [20].

RESULTS

Field Measurements

Soil respiration ranged from 1.52–9.81 g (C–

CO2)/m2 day and had a pronounced seasonal dynamic

with maximum values in mid-July. Due to the dry
weather that set in during the second half of the sum-
mer, we observed relatively low values of the CO2

emission rate from the soil, even at soil temperatures
higher than in early July.

The soil temperature during the measurements
varying in the range of 3.2–24.2°C, air temperature—
4.2–29.0°C, and soil moisture—8.3–61.7% (Fig. 2).
Remotely sensed temperature data were in good agree-
ment with field data, but field-measured air tempera-
tures were consistently higher than the daily average
calculated from remote sensing data. In contrast to
temperature, field data on soil moisture were less con-
sistent with remote sensing.
AN JOURNAL OF ECOLOGY  Vol. 56  No. 3  2025
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Fig. 2. Dynamics of soil temperature (a), air temperature (b), and soil moisture (c) throughout the year.
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Selection of Predictors

Analysis of the features importance using the
Boruta method showed that the importance of the
“sample plot” factor (Plot) was lower than that of the
shadow predictors (Fig. 3a). The “Position” and
“Cluster” factors showed marginally higher impor-
tance but still overlapped with shadow predictor
boundaries. Therefore, we decided to exclude these
RUSSIAN JOURNAL OF ECOLOGY  Vol. 56  No. 3  2
variables from the “simplified” model. The greatest

influence on the accuracy of the model was exerted by

air and soil temperature, as well as soil moisture.

Moreover, remote sensing data were of greater signifi-

cance than field-measured parameters; field and

remote sensing data highly correlated with each other

(Fig. 4).Therefore, we excluded field measurements of

temperature and humidity to create a model with
025
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Fig. 3. Importance of predictors estimated by the Boruta algorithm: (a) all predictors, (b) predictors measured in the field were
excluded. Smin, Smean, Smax—shadow predictors.
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fewer predictors. The NDVI index had a smaller

impact on accuracy, and the importance of the SPEI

index was approximately at the same level, with the

exception of SPEI10. After excluding field observa-

tions, the differences in the significance of the SPEI

indices became more noticeable (Fig. 3b). For the

simplified model of 12 predictors, we retained three

SPEI indicators: for 1, 3, and 10 months. Thus, for the

“simplified” model we selected only predictors based

on remote sensing data: air and soil temperature, soil

moisture, NDVI and the SPEI1, SPEI3, and SPEI10

indices.
RUSSI
Annual CO2 Fluxes

The full and simplified models demonstrated com-
parable performance in both annual dynamics and
accuracy metrics (Fig. 5, Table 2); annual values of
CO2 emissions for each approach did not differ when

using both models. However, the results of different
approaches differed significantly from each other (see
Table 2). When evaluating the model supplemented
with literature data on winter respiration, the annual
emission value with direct extrapolation was 830.3 ±

6.4 g C/m2year, i.e., the initial model overestimated
the annual results by almost 1.4 times. When averaging
AN JOURNAL OF ECOLOGY  Vol. 56  No. 3  2025



ESTIMATES OF ANNUAL CARBON DIOXIDE FLUXES FROM THE SOIL 223

Fig. 4. Correlations of predictors with each other and with soil respiration rate.
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the results of approaches based on classical regression,

the annual f lux was 851.6 ± 8.0 g C/m2year. We found
no significant differences between the calculation
results and the SRBD data.

RESULTS AND DISCUSSION

Field Measurements

The obtained absolute values of soil respiration

(1.52–9.81 g (C–CO2)/m2 day) were close to the val-

ues that are usually recorded for temperate latitude
forests: up to 4.5 ± 0.8 [21], 2.9 ± 0.7 [22], 4.6–11.7
[23], 3.6–4.6 [24], and 1.3–14.4 [9, 25]. Seasonal
dynamics characterized by maximum CO2 emissions

in the summer months was similar to the dynamics
described for the southern taiga [26] and the northern
taiga forests of Eastern Siberia [24] and Central Sibe-
ria [27]. In the second half of summer (between 220
RUSSIAN JOURNAL OF ECOLOGY  Vol. 56  No. 3  2
and 240 days), despite the highest soil temperatures of

the year (over 15°C), low humidity was the reason that

soil respiration values hardly rose above 5 g (C–

CO2)/m2day, although even at low temperatures but

higher soil moisture, the respiration rate reached this

value and even exceeded it. It is known that at extreme

values of soil moisture (too low or too high), the abso-

lute indicators of soil respiration decrease and its tem-

perature sensitivity changes [10, 28]. Furthermore,

despite its low correlation with the carbon dioxide

emission rate, soil moisture had high “significance”

for the model’s accuracy. This can be interpreted as a

fact of its strong influence on soil respiration at certain

points in time. Therefore, we conclude that soil respi-

ration during the summer drought of 2022 was limited

by its moisture content, and not by temperature,

which was also noted in other studies [28].
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Table 2. Comparison of annual soil CO2 emissions from the forests of the Ural-Carbon carbon supersite
(g C/m2 year), estimated using different approaches and literature data (mean ± standard deviation, n = 6)

SRBD—Soil Respiration Database [18].

Approach

Model used

full

R2 = 0.92, MSE = 0.22

simplified

R2 = 0.89, MSE = 0.31

Direct extrapolation 1187.31 ± 45.03 1152.86 ± 7.83

Based on summer emission 966.99 ± 49.32 965.99 ± 10.35

Based on emission at T > 5°C 737.11 ± 27.73 737.15 ± 5.55

According to SRBD
All forests north of 55° N Forests of the Russian Federation north of 55° N
751.85 ± 477.29 (n = 170) 687.35 ± 273.42 (n = 39)
Evidently, due to the dry summer conditions, spa-
tial variability in CO2 emissions was lower than tempo-

ral variability, as demonstrated by the minimal contri-
bution of spatial predictors (“Cluster,” “Position,”
“Plot”) to the model’s accuracy.

Selection of Predictors

In developing our simplified model, we intention-
ally prioritized temporal predictors through a selection
process that balanced statistical metrics (predictive
contribution and multicollinearity) with mechanistic
RUSSI

Fig. 5. Dynamics of soil resp
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interpretability of their effects on soil CO2 eff lux rates.

The inclusion of SPEI1 accounts for immediate

antecedent moisture conditions, effectively buffering

against disproportionate respiration pulses following

rewetting after drought episodes [10]. SPEI3’s signifi-

cance corroborates known hydrological legacy effects,

particularly the demonstrated impact of spring soil

moisture on annual carbon fluxes [2]. However, our

current single-year analysis necessarily limits tempo-

ral inference—while SPEI3 may currently reflect

measurement-date effects, multiyear data could reveal

its stronger association with interannual May condi-
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tions. It is also likely that the high importance of
SPEI10 is associated with the analysis of data for
essentially one year, and when analyzing long-term
dynamics it will be replaced by SPEI12 (i.e. what was
the humidity level of the year preceding the measure-
ments), similar to what we showed for the pine forests
of the Middle Urals [25].

Annual Flows

Both the full and simplified models of the depen-
dence of the soil emission rate on environmental fac-
tors based on an RF turned out to be higher in accu-
racy than the model for pine forests of the Middle

Urals with a comparable set of predictors (R2 = 0.77,
MSE = 0.8) [25]. Their quality was also superior to a
local model based on the RF algorithm for mountain

forests in the southern Rocky Mountains (R2 = 0.44,
MSE = 0.8) [29] and a global scale model of northern

hemisphere forests with a higher R2 (up to 0.86,
MSE = 2.16) [30].

The difference in the estimates of annual CO2

fluxes from the soil obtained using different
approaches is interesting. We can conclusively state
that direct extrapolation of the RF model beyond its
training data range led to overestimation. The point is
the principle of operation of decision trees, used as a
basis for this algorithm: when splitting by the extreme
value of the predictor in the training sample, the algo-
rithm assigns the same value of the target variable to
the entire set located beyond this extreme point [31].
For example, in our model, the rate of soil respiration
was the same at all soil temperatures below 3°C, which
naturally does not correspond to reality at all, because
at low soil temperatures, its respiration is especially
sensitive to it and quickly decreases with decreasing
temperatures [19, 32]. Winter CO2 f luxes can vary by

an order of magnitude while remaining quantitatively
small (e.g., 0.5 g C–CO₂/m²/day [33] or 0.2–0.3 at
0°C, decreasing to ~0.05 at –3°C [34]). This explains
why incorporating literature-derived winter f luxes sig-
nificantly improved model accuracy compared to
direct extrapolation.

The more difficult question to answer is which of
the two combined approaches gives values closer to
reality? Each of them is essentially a classical regres-
sion model that takes into account only temperature,
ignoring changes in other factors and having its own
sources of uncertainty. They are based on a large
amount of data: Soil Breathing in Russia [4] and the
global SRBD database [3], but do not have absolute

accuracy (R2 = 0.95 and R2 = 0.81, respectively), i.e.,
in each specific year the calculation results of these
approaches may deviate from the ideal regression
dependence by which they are described. Therefore,
averaging the results of different approaches can have
an ensemble effect, where the average of the different
RUSSIAN JOURNAL OF ECOLOGY  Vol. 56  No. 3  2
forecasts is closer to the true values than each individ-
ual forecast.

The strong agreement between field and remote
sensing temperature data, coupled with satellites'
greater predictive contribution, recommends priori-
tizing satellite data for soil respiration modeling.
Beyond methodological advantages, this approach
would standardize f lux estimations across regions
while minimizing instrumentation errors and observer
bias.

CONCLUSIONS

In 2022, the CO₂ f lux from soils of the dark conif-
erous forest at our carbon monitoring site showed no
statistically significant increase compared to average
values recorded for forests north of 55°N latitude.
While these preliminary results require further valida-
tion, our study yielded several important methodolog-
ical insights.

(1) Spatial variability within the our monitoring
site proved minimal, with spatial factors contributing
negligibly to model accuracy.

(2) Remote sensing data for soil and air tempera-
tures demonstrated strong agreement with field mea-
surements. Satellite-derived variables not only
enhanced model precision but also offer standardized
data acquisition across research teams.

(3) Direct Random Forest extrapolation without
winter respiration data systematically overestimated
annual f luxes. This bias can be mitigated either
through minimal winter sampling or by employing
combined methodological approaches.

(4) Predictor selection enabled development of a
more interpretable model without compromising pre-
dictive performance, through retention of only the
most significant environmental variables.
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