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Abstract

The first approach based on self-supervised learning (SSL)
with parameter-efficient fine-tuning is proposed for au-
tomated identification of tumor-associated macrophages
(TAMs) on standard sections stained with hematoxylin and
eosin (H&E) in diffuse large cell B-cell lymphoma (DLBCL).
The approachutilizedResNet-18 architecturewith SimCLR-
based contrastive learning using NT-Xent loss function
(Normalized Temperature-scaled Cross Entropy), enhanced
by Low-Rank Adaptation (LoRA) for efficient parameter
optimization. Based on 23 WSI microphotographs of DL-
BCL (856 manually annotated TAMs) supplemented with
LyNSeC and Immunocto sets, the NT-Xent loss function
ResNet-18 achieved an accuracy, exceeding the performance
of traditional transfer learning. The proposed system suc-
cessfully distinguishes TAM on H&E slices, eliminating
the need for immunohistochemical (IHC) staining. How-
ever, despite the promising results, larger clinical trials are
needed to confirm the prognostic significance.

Index Terms: Diffuse large B-cell lymphoma (DLBCL), Tumor-

associated macrophages (TAM), Self-supervised learning (SSL),

Contrastive learning, H&E staining, Digital pathology, Computer

vision

1 Introduction

Diffuse large B-cell lymphoma (DLBCL) is an aggressive hemato-

logical malignancy, with approximately 150000 new cases diag-

nosed annually [14]. The overall five-year survival rate does not

exceed 65%, and around 30–40% of patients remain resistant to

standard immunotherapy [15]. Tumor-associated macrophages

(TAMs) play a critical role in the tumor microenvironment and

significantly impact disease prognosis [1, 18]. High TAM density

has been associated with poor overall survival and more advanced

DLBCL stages [11, 21], making the quantitative assessment of

TAMs a clinically important task. Traditional methods for iden-

tifying TAMs rely on immunohistochemical (IHC) staining using

specific antibodies such as CD68 and CD163 [8]. These methods

require additional time, financial resources, and specialized equip-

ment. Meanwhile, standard hematoxylin and eosin (H&E) staining

does not allow easy identification of TAMs.

Figure 1. Incidence of DLBCL

1.1 Hypotheses
We propose the following hypotheses:

- H1: A ResNet-18 model pre-trained via self-supervised learn-

ing with contrastive NT-Xent loss (Normalized Temperature-

scaled Cross Entropy) on unlabeled H&E-stained DLBCL histo-

logical images will demonstrate superior performance in tumor-

associated macrophage (TAM) identification compared to models

initialized with ImageNet weights or trained from scratch, due to

domain-specific feature representations adapted to lymphoid tis-

sue morphology

- H2: Integration of Low-Rank Adaptation (LoRA) with self-

supervised pre-training will enable efficient fine-tuning for TAM

classification while maintaining comparable or superior perfor-

mance to full parameter fine-tuning, demonstrating parameter ef-

ficiency without sacrificing diagnostic accuracy.

- H3: The proposed SSL-based approach can effectively distin-

guish TAM from morphologically similar cell types (histiocytes,

endothelial cells, reactive lymphoid elements) on standard H&E-

stained sections without requiring IHC markers, achieving diag-

nostic performance comparable to expert pathologists.

1.2 Goals
To validate these hypotheses, we define actionable goals:

- G1: Develop and optimize a self-supervised learning frame-

work based on SimCLR with NT-Xent contrastive loss specifically

adapted for H&E-stained DLBCL histological images, incorporat-

ing LoRA for parameter-efficient adaptation and establishing su-

perior feature representations compared to ImageNet pre-training

baselines.

- G2: Create and validate an automated TAM identification

system that achieves clinically relevant performance metrics on

standard H&E-stained DLBCL tissue sections, demonstrating non-
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Table 1
Models for histological image analysis

Model Application Features Link

DeepCell cell segmentation H&E-stained histological images, not for TAM Van Valen D. 2016 [17]

HoVer-Net cell segmentation H&E-stained histological images, not for TAM Graham S. 2019 [4]

ConCORDe-Net cell segmentation IHC-stained histological images Hagos Y. 2019. [5]

GOTDP-MP-CNNs diagnosis of DLBCL H&E-stained histological images, not for TAM Li D. 2020 [7]

CellProfiler cell segmentation H&E-stained histological images, not for TAM Stirling D. 2021 [16]

U-Net cell segmentation H&E-stained histological images, not for TAM Manju P. 2023 [12]

HoLy-Net DLBCL image segmentation H&E-stained histological images, not for TAM Naji H. 2024 [13]

Pathomics predict DLBCL outcomes H&E-stained histological images, not for TAM Li Z. 2025 [10]

inferiority to expert pathologist assessment and eliminating the

need for additional IHC staining.

2 Related work

Deep learning methods have shown impressive results in the

histopathological diagnosis of DLBCL. Li et al. developed an

ensemble platform comprising 17 convolutional neural networks

(GOTDP-MP-CNNs), achieving 99 % accuracy in classifying DL-

BCL based on H&E-stained histological images—surpassing both

conventional CNNs (87–96 %) and experienced pathologists (74 %)

[7]. In 2020, an integrative model called “Pathomics” was intro-

duced, combining clinical data with hundreds of morphological

features automatically extracted from H&E slides to predict DL-

BCL outcomes. The model achieved a concordance index of 0.791

and an AUC of 0.812 for predicting 3-year overall survival [10].

Table 1 shows themost significant work in the field of cell segmen-

tation of H&E-stained histological images as well as in the field of

DLBCL detection.

Automated histological image segmentation has advanced con-

siderably thanks to deep learning architectures such as U-Net,

DeepCell, and CellProfiler, enabling accurate delineation of cellu-

lar contours and morphometric characteristics [12, 16, 17]. How-

ever, the application of segmentation methods to H&E images

in DLBCL remains quite limited. Naji and colleagues introduced

HoLy-Net, based on HoVer-Net [4], for DLBCL image segmenta-

tion, achieving an F1-score of 0.899 compared to 0.849 for Mask

R-CNN in binary classification of nuclei as “tumor” / “non-tumor”

[13].

A critical gap remains the near-total absence of validated com-

puter vision systems for identifying and quantifying TAMs in

H&E-stained sections. This is largely because macrophages lack

distinct morphological features on H&E staining that would allow

for reliable differentiation from histiocytes, endothelial cells, or

reactive lymphoid elements [9, 20]. As a result, the vast major-

ity of existing AI solutions for TAM analysis still depend on prior

IHC staining, thereby reintroducing the original limitations of that

method [5].

There are also several significant technical limitations in cur-

rent approaches. HoLy-Net is not publicly available, which hin-

ders specific identification of TAMs within the “non-tumor” cate-

gory in DLBCL. Moreover, there is considerable variability in im-

age quality due to differences in tissue preparation and staining

protocols. A major challenge remains the lack of publicly avail-

able, well-annotated datasets of DLBCL with H&E staining. Pre-

trained models based on natural image datasets such as ImageNet

perform suboptimally on DLBCL images due to the unique struc-

ture of lymphoid tissue.

The shortage of high-quality annotated data has driven the de-

velopment of SSLmethods, which can extract informative domain-

specific representations for medical imaging tasks [2, 3]. For

instance, Ciga et al. demonstrated that using SSL with the con-

trastive SimCLR approach on histopathological data provides an

absolute increase in classification accuracy by an average of 10.3

percentage points, and segmentation by 6-8 percentage points

compared to models pre-trained on ImageNet for ResNet-18/34/50

architectures [3]. Similar results were obtained in a study by

Wang et al. where self-supervised methods (for example, DINO

based on CTRansPath) on the NCT-CRC-HE dataset demonstrated

an increase in accuracy in classification from 87 % (ImageNet) to 95

% (SSL), that is, an increase of 7.97 percentage points (and up to 11-

15 percentage points with limited amounts of training data) [19],

and Koohbanani et al. demonstrated substantial improvements

in tumor region segmentation, outperforming traditional transfer

learning approaches and ImageNet-pretrained models [6].

In this context, the development of a deep learning model

for automatic identification, segmentation, and quantification of

TAMs on standard H&E-stained sections represents a promising

direction that addresses current technological limitations.

3 Methods
3.1 Dataset and Annotation

The study utilized 23 WSI microphotographs of DLBCL stained

with hematoxylin and eosin (H&E), provided by the Department

of Pathology, School of Medicine, Tokai University, Japan. Trained

specialists manually annotated 856 macrophages under expert su-

pervision. Additional datasets included LyNSeC (40 DLBCL im-

ages) and Immunocto (large-scale immune cell database) for mod-

els pretraining. Binary masks were generated using OpenCV, with

each labeled macrophage validated and counted. The annotation

protocol ensured consistency between experts, with documented

uniform markup rules for ambiguous cases. Binary masks were

generated using OpenCV, with each labeled macrophage validated

and counted. The annotation protocol ensured consistency be-

tween experts, with documented uniform markup rules for am-

biguous cases.

3.2 Image Patch Segmentation

To build the training dataset, the following strategy was imple-

mented. Microphotographs were divided into non-overlapping

patches of 256×256 pixels. Each labeled macrophage was cen-
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tered within the patch using geometric transformations (transla-

tion and rotation) to prevent the edges of the macrophages from

being cut off. This was done to prevent the model from learning

on half of a macrophage as the target. To generate background

patches, 30 random patches per original image were extracted

frommacrophage-free regions, ensuring nomacrophage presence.

The final dataset consisted of 859 macrophage-containing patches

and 690 background patches.

3.3 Data Augmentation

For each macrophage-containing patch, 10 additional augmented

images were generated using a transformation pipeline imple-

mented with the Albumentations library. A horizontal flip was

applied with a 50% probability, and similarly, a vertical flip was

applied with a 50% probability. This increased data variability and

ensured the model’s invariance to object orientation. Color dis-

tortions were applied with a 50% probability and included random

adjustments to brightness within the range (0.01 to 0.3), contrast

(0.01 to 0.3), saturation (0.01 to 0.4), and hue (0.01 to 0.1). These

transformations improved the model’s robustness to lighting con-

ditions and color variations. Gaussian blur with a fixed kernel size

of 3×3 was also applied with a 50% probability to simulate defo-

cus and motion blur effects, enhancing model resilience to image

noise and degradation. All transformations were applied stochas-

tically, ensuring a diverse augmented dataset while preserving the

semantic integrity of the original images.

Figure 2. Data preprocessing

3.4 YOLO Training

Training using the prepared training dataset of 18 images, split

into patches using themethod described above, and similarly 5 im-

ages for validation, the YOLOv11 (versions -n, -m). As part of the

experiment, a special data set was prepared for one of the train-

ing cycles, where the patches were 512x512 pixels. To train the

YOLOv11models, we used the SGD optimizer with an initial learn-

ing rate of 0.01, a momentum of 0.937, and regularization weight

decay = 0.0005. To control the learning rate change, we used the

cosine lr scheduler with aminimum rate of lrf = 0.01 and awarmup

phase of 3 epochs. Training was conducted for 60, 100, and 300

epochs; the results are shown in Fig. 1. The evaluated metrics

include Precision, Recall, mAP@0.5, and mAP@0.5:0.95.

3.5 Supervised Baseline Training

Supervised Baseline Training: We tested two different approaches

of supervised training with models without domain specific pre-

training The U-Net model was trained with simple semantic seg-

mentation tasks with patches of TAMs, background and corre-

sponding masks. We used the implementation of U-Net in seg-

mentation models pytorch library with EfficientNet Lite back-

bone (about 3M parameters) initialized with ImageNet pretrained

weights. We trained it for 8 epochs with AdamW optimizer an-

dOneCycleLR scheduler (max_lr: 0.0025, div_factor=25). Experi-

ments with bigger backbones and longer training gained no ad-

ditional quality. Tversky loss was used with FN penalty 4 times

higher than FP penalty due to possible unlabeled TAMs in the

images (simple DICE loss showed worse results). We also tested

the YOLOv8n-seg model as an example of an instance segmenta-

tion approach. We trained it with default parameters except for

32 batch size and 50 epochs. Longer training and bigger models

showed equal or worse quality. For segmentation quality assess-

ment we used 5-fold cross validation with splitting by the whole

pictures to prevent data leakage caused by intersecting patches.

3.6 Model Architecture and Training

Self-Supervised Learning. The backbone architecture was

based on ResNet-18, employing contrastive learning with the NT-

Xent loss and LoRA for parameter-efficient fine-tuning. This com-

bination reduces the number of trainable parameters while main-

taining model performance.

Self-Supervised Pretraining. Training the feature encoder

on the combined dataset without labels. Learning domain-specific

representations tailored to DLBCL histological images.

Supervised Fine-Tuning. Training a TAM classifier (the

model head) for binary patch classification. Using labeled data to

finalize model tuning.

3.7 Self-Supervised Representation Learning (SimCLR +
LoRA)

Backbone architecture. A ResNet-18 encoder initialised with

standard ImageNet weights serves as the feature extractor. All

convolutional layers receive rank-reduction adapters via LoRA

(r=8, 𝛼 = 16, dropout=0.1) to enable parameter-efficient

fine-tuning.

Projection head and loss. Encoder outputs (512-D) are flat-

tened and passed to a two-layer MLP (512 → 512 → 128) with

BatchNorm and ReLU. Contrastive optimisation uses the NT-Xent
loss with temperature 𝜏 = 0.1.

Data pipeline. Tiles are deterministically split (90% train, 10%

val, seed 42). We employ the standard SimCLR augmentation fam-

ily: RandomResizedCrop(224), horizontal flip, colour jitter (0.8),
grayscale (𝑝 = 0.2), GaussianBlur(𝜎 ∈ [0.1, 2.0]) and ImageNet nor-

malisation.

Optimisation. Training proceeds for 100 epochs with batch

size 4 (limited by GPU memory), Adam (lr=3 × 10
−4
, 𝛽1,2 =

(0.9, 0.999)). A 𝑘-NN (𝑘 = 5) probe on frozen features is executed

every 5 epochs.

Evaluation results. We report Top-1 accuracy of a 𝑘-NN clas-

sifier (𝑘 = 5) on the validation set after pre-training:

• Random initialization: 0.3122
• ImageNet initialization: 0.5079
• SimCLR + LoRA (ours): 0.6878

3.8 Qualitative Retrieval Comparison

Figure 3 shows, for a single query tile with true label 0_I3, the
nearest-neighbor retrieved by each feature extractor and its pre-

dicted label:
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Figure 3. SimCLR+LoRA pipeline: each tile is augmented twice, en-

coded by ResNet-18 with LoRA adapters, projected to 128D, and trained

via NT-Xent loss.

3.9 Nearest-Neighbour Comparison

Figure 4 visualizes, for a single query tiles, the nearest-neighbor

retrieved under three feature spaces in one horizontal row.

3.10 SAM ViT-B Fine-Tuning for Binary Segmentation

Base model We fine-tune the Segment Anything Model
(SAM) ViT-B/161 checkpoint sam_vit_b_01ec64.pth. All back-
bone weights are frozen; only q_proj and v_proj layers receive

LoRA adapters (r=16, 𝛼 = 16, dropout 0.1).

Training hyper-parameters Each fold trains for 10 epochs

with batch 4, AdamW (lr = 1×10
−4
, weight decay 10

−2
). Loss:

BCEWithLogits. Best checkpoints are selected by mean IoU on

the validation set.

Evaluation metrics Model performance will be evaluated

using standard semantic segmentation metrics, such as accuracy

and Intersection over Union (IoU), to measure the precision of

TAM identification and segmentation boundaries. The k-NN Top-

1 accuracy will assess the quality of learned representations dur-

ing self-supervised pretraining, while DICE coefficient, recall, and

precision will evaluate segmentation accuracy. Additional metrics

include sensitivity, specificity, and Area Under the Curve (AUC)

for binary classification performance. Pixel-wise Precision and Re-

call – to separately evaluate the ability to detect macrophages (true

positives) versus over-segmentation or missing detections.

4 Results

4.1 Supervised baseline

U-Net and YOLOv8 showed quite similar results, metrics are

shown in the table below. But as we can see from the picture N

due to the instance segmentation task YOLO much better divides

TAMs into the different objects, which is more useful for practi-

cal usage. Overall even without domain specific pretraining using

general domain models reasonably good quality can be achieved.

Table 2
Best results of evaluation of tested models

Model Precision Recall mAP@0.5 mAP@0.5:0.95

yolo11n-seg 0.60121 0.57419 0.61686 0.34585

yolo11m-seg 0.58157 0.54839 0.57328 0.31301

yolo11m-seg512 0.612 0.50883 0.54411 0.27307

4.2 YOLO comparing
Among the evaluated YOLOv11 models (Tab. 2), the yolo11n-

seg configuration achieved the best overall performance, with

the highest values of Precision — 0.60121, Recall — 0.57419, and

mAP@0.5 — 0.61686, as well as the highest mAP@0.5:0.95 —

0.34585. The yolo11m-seg variant trained on 512×512 patches

(yolo11m-seg512) demonstrated the highest Precision — 0.612

among all models, but with a trade-off in Recall and mAP values,

suggesting a more conservative detection strategy. Other configu-

rations of yolo11m-seg and yolo11n-seg showed moderately con-

sistent results, with some repeated entries indicating re-evaluation

under the same settings. Overall, yolo11n-seg exhibited better bal-

ance between detection accuracy and generalization compared to

the heavier yolo11m-seg models.

Table 3
Summary table with the results of the tested models

Model DICE Precision Recall

U-Net 0.509 0.533 0.507

YOLOv8 - 0.516 0.501

ssl + head 0.516 0.741 0.450

4.3 Results of the tested models
The results of the table show a comparison of the three mod-

els using DICE, Precision, and Recall metrics. The U-Net model

showed balanced but moderate values: DICE — 0.509, Precision —

0.533 and Recall — 0.507. YOLOv8 does not have DICE values, but

showed Precision — 0.516 and Recall — 0.501, which is comparable

to U-Net. The ssl + head model stands out most noticeably, which

reached the highest Precision value — 0.741, but at the same time

showed the lowest Recall — 0.450, which may indicate high accu-

racy with a reduced level of completeness. According to the DICE

metric, it slightly surpassed U-Net, gaining — 0.516.

4.4 Overall survival and progression-free survival
In a cohort of 29 patients provided by the Department of Pathol-

ogy, School of Medicine, Tokai University, Japan, CD163 levels

were analyzed both as continuous percentages and as a binary

variable based on an optimal cut-off — 19.68. As a continuous vari-

able, CD163 was not significantly associated with overall survival

(OS: HR = 1.02, p = 0.302) or progression-free survival (PFS: HR

= 1.02, p = 0.237). When dichotomized, lower CD163 levels were

associated with a trend toward better survival outcomes (OS: HR =

0.41, PFS: HR = 0.35), though these results did not reach statistical

significance. The limited sample size likely reduced the statistical

power, highlighting the need for validation in larger cohorts.

1
12 transformer blocks, 768 hidden units, 12 heads, patch size 16 × 16,

pretrained on 11M images with 1.1B masks.
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Figure 4. Nearest-neighbor retrieval for query tile with true label 0_I3.

Figure 5. Baseline segmentation results. Ground truth (center) and pre-

dicted (right) TAMs are depicted in yellow.

Figure 6. Comparison of the mAP@0.5:0.95 metric for the tested models,

when training on 60-300 epochs

Figure 7. Overall survival and progression-free survival

5 Conclusions
The present study represents the first validated approach for the

automated detection of tumor-associated macrophages in diffuse

large B-cell lymphoma standard slices stained with hematoxylin

and eosin using self-learning algorithms. The developed method-

ology, based on a combination of SimCLR pre-learning with LoRA

adaptation, demonstrates a better quality of feature extraction

compared to traditional transfer learning approaches. Despite the

fact that the analysis of clinical correlations has revealed promis-

ing trends, large-scale validation studies are required to estab-

lish the prognostic significance. Nevertheless, the results achieved

open up opportunities for reducing diagnostic costs and standard-

izing the quantification of TAM in routine histopathological prac-

tice.
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