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ABSTRACT 

Camera traps are a powerful, practical, and non-invasive method used widely to monitor 

animal communities and evaluate management actions. However, camera trap arrays can 

generate thousands to millions of images that require significant time and effort to 

review. Computer vision has emerged as a tool to accelerate this image review process. 

We propose a multi-step, semi-automated workflow which takes advantage of site-

specific and generalizable models to improve detections and consists of (1) automatically 

identifying and removing low-quality images in parallel with classification into animals, 

humans, vehicles, and empty, (2) automatically cropping objects from images and 

classifying them (rock, bait, empty, and species), and (3) manually inspecting a subset of 

images. We trained and evaluated this approach using 548,627 images from 46 cameras 

in two regions of the Arctic: “Finnmark” (Finnmark County, Norway) and “Yamal” 

(Yamalo-Nenets Autonomous District, Russia). The automated steps yield image 

classification accuracies of 92% and 90% for the Finnmark and Yamal sets, respectively, 

reducing the number of images that required manual inspection to 9.2% of the Finnmark 

set and 3.9% of the Yamal set. The amount of time invested in developing models would 

be offset by the time saved from automation after 960 thousand images have been 

processed. Researchers can modify this multi-step process to develop their own site-

specific models and meet other needs for monitoring and surveying wildlife, balancing 

the acceptable levels of false negatives and positives. 

 

KEYWORDS:  Arctic wildlife monitoring, deep learning, ResNet-50, MegaDetector, time-lapse 

camera 
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1.  Introduction 

 

Digital camera traps have become widely used for surveying and monitoring wildlife (Burton et 

al., 2015; Wearn and Glover-Kapfer, 2019). Camera traps are a non-invasive and relatively cost-

effective method with many applications in ecology such as monitoring biodiversity (Oliver et 

al., 2023), investigating site occupancy (Hamel et al., 2013), estimating abundance (Stien et al., 

2022), or studying species interactions (Rød‐Eriksen et al., 2023). They make it realistic to 

obtain sufficient data to address ecological questions also for species that can be difficult to 

observe (e.g. Perera et al., 2022). However, trap arrays often generate thousands to millions of 

images requiring substantial effort to review manually. Computer vision offers the potential to 

significantly accelerate this image review process and is a rapidly developing field (e.g. Vélez 

2022, Morris 2024).  

 

Computer vision tools have been developed to facilitate different steps of image classification. A 

first step is often to remove empty images, here  MegaDetector (Beery et al., 2019) or Machine 

Learning for Wildlife Image Classification 2 (MLWIC2, Tabak et al., 2020) are frequently used 

platforms. The next step is to classify and count animal species. A whole row of ready-made 

classifiers exist (Morris et al. 2024), however, existing classifiers focus in general on the fauna of 

a specific region, thus for example , MLWIC2 (Tabak et al., 2020) and CameraTrapDetectoR 

(Tabak et al., 2022) have been developed to classify North American species, the DeepFaune 

initiative aims at identifying the french fauna, WildID detects South African wildlife and the 
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workflow developed by Böhner et al. (2023) aims specifically and registering small rodents. 

Other workflows or platforms have been developed to allow users to train their own model 

(Mega Efficient Wildlife Classifier, Aandahl and Brook, 2024; Wildlife ML, Bothmann et al. 

2023). This usually requires a large amount of images for training and often rather advanced 

computer skills For a comprehensive list of available tools and options, see (Morris, 2024). 

However, the accuracy of computer vision still lags that of human annotators, particularly when 

images are derived from locations outside of a model’s training domain, and several authors have 

emphasized the need for human review of computer vision results (Fennell et al., 2022; 

Schneider et al., 2020; Vélez et al., 2023).  

 

The vast majority of camera traps are configured to use a motion sensor to trigger image capture 

when an animal is present in the camera’s field of view (Böhner et al., 2022). However, in some 

cases, animals of interest may be too distant to trigger a motion sensor, or environmental 

conditions may result in an impractical number of false triggers, for instance during heavy 

snowfall; in these cases, a time-lapse protocol may be more appropriate (Hamel et al., 

2013).Time-lapse camera trap datasets contain many more empty pictures than motion-triggered 

datasets; but they produce data in a more standardized form as the trigger behavior of motion 

sensors may vary quite substantially depending on species and other factors (Findlay et al., 

2020). Moreover, time lapse protocols have the advantage of capturing small or distant animals 

in the field view of the camera that can be missed by motion sensors. This allows time-lapse 

cameras to capture as many as six times the number of animals recorded in motion trigger setups, 

but distant animals can be difficult for computer vision systems to detect (Leorna and Brinkman, 

2022). A reliable method of identifying empty pictures is especially important for a workflow 
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aimed at minimizing hands-on time required for analyzing time-lapse camera trap datasets. At 

the same time, to maintain data quality and maximize detection probabilities for animals that do 

not remain long at camera stations, it is important to minimize false negatives. Moreover, empty 

pictures should be distinguished from pictures with bad visibility or obstructed lenses to relate 

detections to observation indices (i.e., camera trap days) for the estimation of relative 

abundances of species (Burton et al., 2015).  

 

This paper presents a multi-tool solution that is specifically tailored to analyzing time-lapse 

camera trap datasets using site-specific models in conjunction with genelized models. It provides 

a guided example of a multi-step workflow for semi-automated classification of images from 

camera traps using a personal computer.  

 

Our approach combines training custom site-specific models that can be adapted to a new 

context in a flexible way with a highly performant openly available model, MegaDetector (Beery 

et al., 2019). Specifically, our approach consists of (1) identifying high-quality images, for which 

there is no model we are aware of currently available, (2) separating empty images from images 

with animals, humans, or vehicles, (3) cropping out detections from images and classifying them 

by object type (rock, bait, empty and species), and (4) manually inspecting a selection of images. 

We investigate trade-offs between false negatives and manual reviewing time, and we evaluate 

the benefit of several enhancements to the typical MegaDetector workflow.  

 

Because arctic ecosystems are at present rapidly changing under the impact of climate change 

and increasing human activity (e.g., Ims et al., 2013), there is an urgent need for thorough 
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monitoring of important arctic wildlife species such as carnivores. Camera traps are a well-suited 

non-invasive method that can be deployed relatively easily in remote areas (Hamel et al., 2013). 

Consequently, we demonstrate the proposed workflow by applying it to two long-term programs 

from the Arctic monitoring changes in the predator/scavenger community in the Yamalo-Nenets 

Autonomous District, Russia, and Finnmark County, Norway. Our datasets consist of time-lapse 

images taken at bait stations in the late winter, a time at which frequent snowfalls make the use 

of motion sensors difficult.  

 

2.  Workflow 

 

The multi-step, semi-automated workflow proposed here (Fig. 1) is adapted from Böhner et al. 

(2023), including pre-processing of images, model training, classification, manual quality 

checks, and final data formatting. Specifically, we build on the results of Rigoudy et al. (2022) 

and Fennell et al. (2022), who combined MegaDetector with manual classification and custom-

trained models. The workflow consists of the following two classification steps in addition to 

pre-processing of images and final manual inspection, quality control, and data formatting (Fig. 

1).  
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Image collection and renaming 

Images are downloaded from field camera traps and renamed with unique identifiers 

based on location, camera number, date, and time. 

 

Classification 1 – Image quality and Animal presence/absence  

Our trained classification model is used to detect low- and high-quality images in 

parallel with MegaDector to classify images into animal, person, vehicle and empty. 

 

Classification 2 – False-positive  

Images containing animals according to MegaDetector are cropped from the original 

images. Cropped images are then classified by object type (rock, bait, empty, and 

species) using our trained classification model. 

 

Final data formatting, quality check, and manual classification  

Classification results from the two steps are combined to produce a final data file with 

classification labels. A random subset of computer-classified images is selected to check 

model performance. All images containing animals are manually reviewed. 

Figure 1. Time-lapse camera trap workflow. Data preparation and model steps are adapted from 

Böhner et al. (2022). 

 

Classification 1 – Image quality and animal presence/absence 

 

As an initial classification step, we categorized images by quality and Animal presence/absence 

in parallel using two models. First, separating empty images from low-quality images is 

important to quantify the observation effort (i.e., the number of high-quality images per day) for 

downstream modeling of detections. We trained a custom model that could classify images as 

Bad (low quality) or Good (high quality). 
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For animal detection on all images, we used MegaDetector v5.0
1
 (Beery et al., 2019), which 

detects animals, humans, and vehicles in each image. In our case, MegaDetector was more 

accurate than other products considered for detecting animals and minimizing the number of 

false negatives. It further allows cropping individual detection from images, thus facilitating 

counting and species identification. Combining the results from both models, empty images were 

separated from images potentially containing an animal. 

 

Classification 2 – Reducing false positives 

 

We used the bounding boxes of each object detected in the remaining images to crop parts with 

pixels that contain an object (Fig. S1). We cropped only those classified by the model as animals 

and applied a custom model to identify each crop into different categories. This step greatly 

reduced the number of false positives, as crops containing stones or other artifacts could be 

sorted out by the custom model.  

 

Final step – data formatting and quality check 

 

Quality control is an important part of every automated image classification workflow (Böhner et 

al., 2022), and applying an automatic classification workflow to a new dataset requires particular 

care. Optimally, in the case of a multi-annual monitoring program, a workflow should be 

validated by applying it to a year or season of data that has not been used for its development. As 

species identification depends in large part on the number of images available for training and 

                                                 
1
 https://github.com/agentmorris/MegaDetector 
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the complexity of the community in a specific study, it may be necessary to manually check all 

images with animals.  

 

3. Materials and Methods 

3.1 Camera trap setup and data collection 

Images were obtained from monitoring programs of the tundra carnivore scavenger guild in two 

low Arctic regions: “Yamal” (the Yamalo-Nenets Autonomous District, Russia) and “Finnmark” 

(Finnmark County, Norway). In Yamal, ten cameras were deployed at one site, Erkuta (68.2° N, 

69.1° E), and in Finnmark, 36 cameras were spread across five sites (70-71° N, 25-30° E; Table 

1; Killengreen et al., 2012). Cameras were activated from the end of February to early April. 

Data used in this study were collected from 2016 to 2022.  

 

Table 1. The number of cameras deployed in the field for each site and the total number of 

images available for workflow development (model training, validation, and testing; see 

supporting information for details) from Finnmark, Norway (2016-2018, 2020-2021) and Yamal, 

Russia (2017-2021), and an independent test set from years not used in training (Finnmark 2019, 

and Yamal 2022). 

Region Site Number of 

cameras 

Training/validation 

images 

Test 

images 

Finnmark Komagdalen 8 461,407 75,824 

 Vestre 

Jakobselv 

7 367,483 79,807 

 Stjernevann 5 284,994 53,555 

 Ifjordfjellet 8 401,039 58,652 

 Gaissene 8 426,970 78,620 

Yamal Erkuta 10 535,910 120,840 

We used RECONYX® cameras (RapidFire, HyperFire and HyperFire 2, Holmen, WI, USA) 

placed on a permanently fixed metal pole at 30-50 cm above the snow surface. Cameras were 
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painted in white and equipped with external batteries. In Finnmark, each camera station was 

baited with a ca 15 kg block of frozen slaughterhouse remains of reindeer (tendons, entrails, 

small meat fragments). In Yamal, frozen pelvis bones of reindeer with 1-2 kg of meat were 

mounted on a metal pole placed 2-5 m north of the camera. Cameras were programmed to take a 

picture every 5 minutes (no motion sensor). After 2-3 weeks of deployment, baits were replaced 

if needed, and memory cards were collected and replaced until the end of the observation period. 

 

Initially, all images were reviewed manually by trained observers using the software MapView 

Professional (RECONYX ®) and separated into low-quality images (Bad) that were out of focus 

or obstructed (snow/ice in front of the lens or snowstorms), and high-quality images (Good) 

where an animal could have been detected.  Good images were classified by animal 

presence/absence (Animal), and species and number of animal(s), when present. A total of 

2,285,351 images were annotated in Finnmark (2016-2021) and 656,750 images in Yamal (2017-

2022; Table 1). Most images from both locations were classified as Good (>83%). In Finnmark, 

Bad images represented 18.1% and in Yamal Bad images represented 8.7% (Table 2). At least 

one animal was detected in 6.9% of all images from Finnmark and in 2% of the images in 

Yamal. Twelve species of mammals and birds were documented in both locations, although 

community structure differed (Table 3). In Finnmark, the most common species was the raven 

(Corvus corax), appearing in 121,409 images, followed by the red fox (Vulpes vulpes) in 14,903 

images.  In Yamal, the most common species was the Arctic fox (Vulpes lagopus), appearing in 

5,017 images, followed by the magpie (Pica pica) in 4,269 images. 

 



Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof 

 

Table 2. Total number of images per classification group as assessed manually in Finnmark and 

Yamal (N), together with median and mean (standard deviation) percentage of images for each 

individual camera trap per year. The total dataset (workflow development and independent 

validation) comprised 36 cameras at 5 sites for 6 years in Finnmark and 9 or 10 cameras for 6 

years in Yamal. 

Location Class ID N Median [%] Mean (SD) [%]  

Finnmark Bad 402,409 14.5 18.1 (14.5) 

 Good Animal 150,532 6.5 6.9 (3.5) 

 Good Empty 1,735,410 78.5 75.7 (13.5) 

Yamal Bad 55,420 5.4 8.7 (9.4) 

 Good Animal 14,133 1.3 2.0 (1.7) 

 Good Empty 587,197 93.4 90.1 (9.3) 
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Table 3. The total number of individuals or crops for each species assessed manually in 

Finnmark  (2016-2021) and Yamal (2017-2022). 

Class ID Finnmark Yamal Included in model 

Moose  - Alces alces 66 0 Yes 

Golden eagle - Aquila chrysaetos 5,168 0 Yes 

Snowy owl - Bubo scandiacus 69* 2 No 

Dog – Canis familiaris 0 19 No 

Raven - Corvus corax 121,409 246 Yes 

Hooded crow - Corvus cornix 1,011 38 Yes 

Wolverine Gulo gulo 1,103 171 Yes 

White-tailed eagle - Haliaeetus albicilla 1,474 0 Yes 

Human – Homo sapiens 152 1,044 No 

Ptarmigan – Lagopus spp.** 0 131 Yes 

Mountain hare – Lepus timidus 0 1,677 Yes 

Magpie - Pica pica 1 4,269 Yes 

Reindeer - Rangifer tarandus 3,143 679 Yes 

Arctic fox - Vulpes lagopus 2,341 5,017 Yes 

Red fox - Vulpes vulpes 14,903 1,037 Yes 

*  All snowy owl images were from the test set (2019), this species was thus not used to train the 

model. 

** Most ptarmigan observed in Erkuta are willow ptarmigan (Lagopus lagopus), but rock 

ptarmigan (Lagopus muta) occur as well. It is difficult to identify the species reliably on camera 

trap pictures. Both species are also present in Finnmark, but they were not recorded 

systematically in that data set because the focus was on predator monitoring.  

 

3.2 Image quality classification: training dataset and model training 

Using the manual classifications, we randomly selected images from each site, camera, and year, 

to obtain  ~15,000 images of Bad quality and ~57,000 images of Good quality for each location 

(Finnmark 2016-2018 and 2020-2021 and Yamal 2017-2021). These images were then 

reexamined by GC and DE, and any misclassified images were removed or reclassified. We also 

excluded marginal images (e.g., partly blurred images, images where an animal is only visible 
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with a tail in a corner etc.), as high-quality training data are important for model training (Böhner 

et al., 2022). In particular, images of animals at large distances (e.g., appearing as points on the 

horizon) that could be identified by humans only because they moved in and out of frame were 

excluded from model training. The resultant data subsets (46,491 images for Finnmark and 

33,889 for Yamal; Table S4) were randomly divided into 92% to be used for model training, 8% 

for validation of the trained model.  

 

Separate two-class models were trained for Finnmark and Yamal using the keras package in R 

(Allaire and Chollet, 2022) with a TensorFlow backend (Allaire and Tang, 2022). Preliminary 

trials showed that region-specific models performed better. The ResNet-50 architecture, a 

convolutional neural network that is 50 layers deep (He et al., 2015), was used to train the 

models with 55 epochs (number of times the algorithm goes through the entire training data set) 

and a batch size of 64 (number of samples to work through before updating model parameters) 

with a one-cycle learning rate (hyperparameter controlling model response to estimated error 

each time the model weights are updated) policy with a minimum of 0.000001 and a maximum 

of 0.001 (Smith, 2018).  

 

We used the keras image_data_generator function for image augmentation, which included 

random assignment of the following: rotation 0-40 degrees, width and height shift range of 20%, 

shear range 0-0.2 radians, zoom range 0-0.2 scalar range, a horizontal flip and a fill mode with 

the nearest pixel.  
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We trained and validated the image quality classifier on a laptop (MacBook Pro, M1 Pro 8-core 

central processing unit (CPU), 14-core graphics processing unit (GPU), 16GB RAM), using the 

GPU rather than CPU for data processing. GPUs are optimized for complex imaging tasks and, 

in our case, outperform CPUs by ~7x. 

 

 After evaluating a range of confidence thresholds for each of the two classes, we found that the 

best results were obtained by using a 0.95 threshold for the Bad class in the image quality model. 

Images that are below this threshold are considered to be of adequate quality for further review. 

Furthermore, any image that contains an animal detection according to MegaDetector is 

considered for further review, regardless of the output of the image quality model. 

 

3.3 Animal detection with MegaDetector 

Two versions of MegaDetector are available, trained on slightly different datasets: MegaDetector 

v5.0a (MDv5a) and v5.0b (MDv5b). Both versions of MegaDetector were applied to all images. 

MegaDetector also provides two optional enhancements that can be combined with either model 

version: 

1. MegaDetector normally resizes each image to be 1280 pixels wide prior to detecting 

objects. The tiling feature instead breaks each image into overlapping 1280-pixel by 

1280-pixel  “tiles”, runs MegaDetector independently on each tile, and combines the 

results. 

2. The test-time augmentation (TTA) feature makes several copies of each image and 

applies a different transformation to each copy prior to detecting objects, then combines 

the results. 
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see To our knowledge, this is the first evaluation of the impact of tiling and TTA on 

MegaDetector’s accuracy.   

We found that detection of animals was slightly better using MDv5a than MDv5b, and that tiling 

and TTA with MDv5a further enhanced detection (Fig. S3) (see Table S1 for settings). Tiling 

helped detect animals at a distance and also those less conspicuous in the snow (white hares and 

arctic foxes). Test-time augmentation was also helpful for detection of less conspicuous animals, 

and especially for those under low light or night conditions (Fig. S4). We merged all detections 

from the MDv5a results with tiling and the MDv5a results with TTA which provided the lowest 

number of false negatives (Table S2); all subsequent analysis of MegaDetector results is based 

on this merged set of detections.. We used a confidence threshold of 0.1 for all three 

MegaDetector categories (animal, person, vehicle). 

To reduce the number of false-positive detections, MegaDetector has a post-processing tool for 

identifying detections that occur in the same location in many images from the same camera, 

which are often rocks or sticks, but may also be sleeping or stationary animals. Consequently, 

this tool is semi-automated: a human reviewer examines one example of each detection , along 

with a grid showing each instance of that detection (Fig. S5). The repeat detection elimination 

(RDE) tool was applied to the merged output (see Table S1 for settings). We found that ~8k tiled 

images take about 1.5 hours to review, which reduced 99,509 animal detections to 36,886 from 

our merged output (Figs S3 & S6). 

 

MegaDetector was run on a Windows PC with two Nvidia RTX 4090 GPUs. 
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3.4 False-positive classification: training dataset and model training 

In the previous sections, we primarily referred to MegaDetector as a tool for categorizing 

images. MegaDetector also predicts the location of each object within the image, in the form of a 

bounding box around each object. For each image that MegaDetector identified as containing 

one or more animals, objects were cropped from the images using MegaDetector’s predicted 

bounding boxes, and those crops were used to train a model for false positive classification. We 

include all classes that had more than 50 images from the combined sites (Finnmark and Yamal). 

For the 12 species classes and 4 non-animal (baits, rocks and empty) we retained (Table 3), we 

obtained 42,591 image crops to train the model, 3,746 for validation at each object detection 

class (Table S5). The classes used for training included empty, rock, and bait in addition to 

animal species, as one of the aims of this classification step was to further reduce the number of 

false positive detections. The animal false positive classification model was trained using the 

ResNet-50 architecture with the same approach as the image quality model described above. 

Each crop was assigned to a class, obtaining the maximum confidence value from the model 

without any threshold. We also combined MegaDetector detection confidence such that if animal 

with a confidence 0.35 or above, the maximum confidence value from the false positive model 

was restricted to only species predictions. This allowed us to reduce the number of false positives 

without a large impact on false negatives. 

 

3.5 Workflow performance 

Workflow performance using data sets representing a separate year of data from each site (2019 

for Finnmark and 2022 for Yamal, Table 1; hereafter ‘test data sets’). Although cameras were 

placed at the same location every year, the background within the site varied both within and 
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between years (e.g., snow cover, lighting, exact camera positioning), creating distinct image sets 

(Fig. S2). This added complexity to the images allowed us to test our workflow (Fig. 1) under 

“real-world” conditions. This approach corresponds to the situation of long-term monitoring 

programs, where new image datasets are obtained annually and should be classified with a 

procedure developed based on available data from previous years (Böhner et al., 2022).  

 

Performance was measured in terms of accuracy, precision, recall, and F1 metrics as defined in 

Table 4 using the caret R package (Kuhn, 2022). For the test data, we also compared the number 

of days and time of day with detection of each species between the workflow results and the 

manual scoring, in addition to the picture-by-picture performance evaluation. Indeed, daily 

counts, time of day, or detections are often used in downstream analyses of camera trap data for 

ecological analyses (Hamel et al., 2013; Rød‐Eriksen et al., 2022). 

 

Table 4. Definitions of model performance metrics based on “caret” R package, based on true 

positives (TP), true negatives (TN), false positives (FP), and false negatives (FN). 

Metric Equation Definition 

Accuracy 
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 

Proportion of correct predictions in the whole data set. 

Precision 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

The proportion of images that a model classified as a 

specific category C that are actually category C. 

Recall 
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

The proportion of images that are actually a specific 

category C that the a model classified as C. 

F1 
2 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

Weighted average of precision and recall. 
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4. Results 

4.1 Model performance on test data 

4.1.1 Image quality models 

The image quality models had high accuracy for the test data sets both in Finnmark (0.977) and 

Yamal (0.959), with higher precision (0.920) and recall (0.910) for low-quality class in Finnmark 

and Yamal (0.764 and 0.779, respectively) (Table 5, Fig. S7).  

 

Table 5. Performance of the image quality model on the test data.. 

Location Id Precision Recall F1 

Finnmark Bad 0.920 0.910 0.915 

 Good 0.986 0.988 0.987 

Yamal Bad 0.764 0.779 0.771 

 Good 0.979 0.977 0.978 

4.1.2 MegaDetector 

All results presented in this subsection refer to the merged detections from the MDv5a results 

with tiling and the MDv5a results with TTA, with a confidence threshold of 0.1. 

 

There were 123 images classified as Bad that included animals, but this was reduced to 31 after 

including animal detection using MegaDetector. After eliminating all Bad images and excluding 

images in which MegaDetector predicted an animal and a human in the same image (1,165 

images Finnmark, 434 Yamal; Fig. S8), because in the manual classification these did not occur. 

Finnmark MegaDetector had an overall accuracy of 0.890. For animals, MegaDetector  had a 

precision of 0.514 and recall of 0.992 (Table 6). The empty class had a precision of 0.999 and 

0.880 recall. A total of 48,704 (14.0%) images were classified as having animals present, but 

approximately half of those were empty (Fig. S8). Excluding false positives (assuming that 

animal images would be reviewed manually), the total number of days with detection of an 



Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof 

 

animal was similar to that of manual classification, with 12 individual camera station detections 

of the 138 underestimating by one camera day in most cases for arctic fox, red fox, wolverine, 

raven, and reindeer (Fig. S9). The detection frequency for each hour of the day was also very 

similar between manual review and MegaDetector predictions, with no directional bias by time 

of day (Fig S11). The model thus results in an acceptably low level of false negatives randomly 

distributed in time.  

 

Table 6. MegaDetector performance on the test data. Excludes Bad images with no MegaDetetor 

confidence below 0.4 and images in which MegaDetector predicted animals and humans, 

because in the manual classification these did not occur. 

Location Class id Precision Recall F1 

Finnmark Animal 0.514 0.992 0.677 

 Empty 0.999 0.880 0.936 

 Human 0.0009 0.381 0.018 

Yamal Animal 0.206 0.862 0.332 

 Empty 0.996 0.908 0.950 

 Human 0.046 0.426 0.084 

For Yamal, MegaDetector had an accuracy of 0.906. The animal class had a low precision of 

0.206, but a relatively high recall of 0.862 (Table 6, Fig. S8), whereas the empty class had a 

precision of 0.996 and a recall of 0.908. Excluding the false positive animal images, 6 of the 32 

individual species camera detections for all camera stations were underestimated (mostly by one 

day) for willow ptarmigan, mountain hare, and magpie (Fig. S10). The detection frequency for 

each hour of the day was also very similar between manual review and MegaDetector 

predictions, with no particular bias to any specific time of day, for all species except willow 

ptarmigan and mountain hare (Fig. S12). For willow ptarmigans, MegaDetector predicted more 
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detections between 5-10 hours and very few detections during evenings than human reviewers. 

MegaDetector predicted fewer mountain hare detections during mid-day than human reviewers. 

 

4.1.3 False positive model 

A total of 83,941 image crops were created from MegaDetector results for Finnmark. Forty-nine 

images were of new classes that were not included in the model (human, snowy owl, black-

backed gull). After excluding these, the accuracy for the false positive model in Finnmark was 

0.91. The model was very precise at classifying cropped images as “No animal” (>0.99; Table 

7), with only one animal image misclassified as empty (Fig. S13) and there were 408 false 

positives. 

 

Table 7. False positive model performance on the test data. To estimate model performance 

metrics, classes that were exclusively in the manual assessment or model output were not 

included. The “No animal” class combines the Empty, Bait, Bait_yamal, and Rock model 

classes. 

  Finnmark   Yamal  

Class ID Precision Recall F1 Precision Recall F1 

No animal 0.986 0.860 0.919 0.985 0.834 0.904 

Golden eagle 0675 0.899 0.771 - - - 

White-tailed eagle 0.623 0.812 0.706 - - - 

Raven 0.921 0.985 0.952 0.04 1.00 0.079 

Hooded crow 0.941 0.888 0.914 - - - 

Magpie - - - 0.964 0.908 0.936 

Mountain hare - - - 0.684 0.181 0.286 

Reindeer 0.084 0.375 0.138 - - - 

Wolverine 0.612 0.719 0.661 0.013 0.600 0.027 

Arctic fox 0.310 0.781 0.444 0.683 0.693 0.688 

Red fox 0.557 0.944 0.701 0.012 0.833 0.025 
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For Yamal, a total of 15,276 image crops were created. Nine images were of animals not 

included in the trained model (snowy owl and ptarmigan). After excluding these, the overall 

accuracy for the false positive model in Yamal was 0.83. The model was precise at classifying 

image crops that did not contain an animal (0.92 precision for the “no animal” class; Table 7) 

with 128 false positives.  

 

4.1.4 All automated steps combined 

After combining all model predictions (image quality, MegaDetector, and false positive) and 

manual inspections we obtain an overall classification accuracy of 0.94 for Finnmark and 0.92 

for Yamal. Including the false positive classification model reduced the animal false positives 

created by MegaDetector from 23,593 to 6,242 images for the Finnmark data set and from 6,990 

to 2,534 images for the Yamal data set (Figs S8 & S14), but at a cost of 132 and 45 false 

negatives, respectively. This equates to animal detection of 4,806 images or 3.9% of the total 

images from camera traps in Yamal, and 32,208 or 9.2% in Finnmark (Fig 2). These results are 

higher than the mean animal detection rates obtained by manual inspection – 2.0% for Yamal 

and 6.9% for Finnmark (Table 2) due to the remaining false positives. 
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Figure 2. Confusion matrix for the results of the complete workflow applied to the test data, 

which represents a full season of data not used in model development at (a) Finnmark and (b) 

Yamal. False positive model results were aggregated in the “Animal” class. The percentage and 

number of images with correct (diagonal, green) and incorrectly predicted classes (off-diagonal) 

are displayed. 

 

5. Discussion 

Our workflow correctly classified, on average, 91% of images into Bad. While it may at first 

seem to be an easy task to exclude bad-quality images from the data set, the number of Bad 

images can be large (on average 18% in Finnmark and 8.7% in Yamal, Table 2), vary by site, 

and change quickly depending on environmental conditions. Nevertheless, separating good 

images from bad images is particularly important for analyses that consider sampling effort, such 

as relative abundance indices (Burton et al., 2015) and exclusion of periods when the camera 

cannot determine the presence or absence of an animal. We are unaware of any other available 

models that are better able to parse good from bad images.  



Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof 

 

 

The detection of images with and without animals was 91% for our time-lapse cameras, similar 

to what other researchers have reported using MegaDetector for cameras using motion sensor 

triggers. We found that MegaDetector’s test-time augmentation, tiling, and repeat detection 

elimination tools improved detection for animals with time-lapse triggers. It could detect smaller 

objects in images than previously reported resolution (60px for Reindeer; Leorna and Brinkman, 

2022). For example, the smallest reindeer detected in our images was 18px, and the cropped 

image was correctly classified by our false positive model. This enhanced detection is 

attributable to the tiling of images, which improves identification of small objects, but some 

detections can be duplicates (Ünel et al., 2019) when an animal spans two or more tiles. 

Therefore, downstream use, such as counting the number of individuals from MegaDetector 

crops (Mitterwallner et al., 2023; Wang et al., 2022), must be considered cautiously, as it may 

overestimate the number of individuals. 

 

Fals positive classification of all images with animals was 77% accurate when compared with a 

manually derived classification. These results are promising, though further work is needed to 

improve accuracy. Although MegaDetector’s repeat detection elimination tool (RDE) helped 

reduce the number of false positives, using our false positive model, which included classes of 

species, baits, rocks or empty, we could reduce the number of images with false positives even 

further. 

 

We obtained for the final portion of the workflow a animal recall of  accuracy of 0.99 for 

Finnmark and 0.843 for Yamal, with false-negative rates for animals of 1.4% and 15%, 
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respectively within the range of what other studies have found (Clarfeld et al., 2023) but are 

dependent on the confidence threshold used (Bothmann et al., 2023). Assuming that all pictures 

where animals were detected by our workflow would be reviewed manually, something we 

would recommend given the performance of the present false positive classification model for 

other classes, this would reduce the number of images that require manual inspection to 9.2% of 

the total number of images to review in Finnmark and 3.9% in Yamal. Implementing this 

procedure could, therefore, save a great deal of time and effort associated with manual 

inspection/classification of imagery. Other computer-assisted workflows have have shown to 

reduce the processing time of image classification load by as much as 5x to 13x depending on 

the tasks (Fennell et al., 2022; Henrich et al., 2023). Our workflow reduces the load by ~62 

hours, however the amount of time required to develop the site-specific models and workflow 

took ~160 hours. It would take approximately 960k processed images to recover the time 

invested in developing the workflow, which makes sense for long-term projects where the initial 

investment of time is recouped over the life of the project. 

 

6. Conclusion 

The proposed semi-automatic workflow for classifying camera trap images is a robust method 

for identifying high-quality images, identifying images that contain animals, and reducing the 

number of false positives. Our workflow detected low-quality images and those with animals 

within the ranges of those detected by manual classification. The false positive classification step 

reduced the number of false positive animal detections generated by MegaDetector. Although the 

false positive model reduced the number of false positives, we recommend that users manually 

review images with animals because the model was not sufficiently accurate to rely solely on 
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computer vision for species classification (hence our description of our workflow as “semi-

automated”). 

 

We provide code ( (https://github.com/gerlis22/CameraTrap.git) for this multi-step process so 

that researchers can create their own site-specific models and modify it to meet their needs for 

monitoring and surveying wildlife. Because our workflow is subdivided into several steps, it is 

flexible and can be adapted to various situations. The initial classification step could, for 

instance, be modified to include a classification into pictures with and without bait in addition to 

quality, or with and without snow, depending on the study's aims. 
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HIGHLIGHTS 

 We propose a multi-step semi-automated workflow classification camera trap images 

 Automatically identifying and removing low-quality images 

 Classification of objects in images into animals, humans, vehicles, and empty 

 Automatically cropping animal objects from images and classifying crops  

 High accuracy and reduced the number of images requiring manual inspection 


