УДК 58.039.

ВЛИЯНИЕ ОДНОКРАТНОГО γ-ОБЛУЧЕНИЯ СО ⁶⁰ НА РОСТ КУЛЬТУР ХЛОРЕЛЛЫ

Э. А. ГИЛЕВА, Н. А. ТИМОФЕЕВА, Н. В. ТИМОФЕЕВ-РЕСОВСКИЙ

Институт биологии УФАН СССР, Свердловск

В радиооиологии накоплен огромный материал по кривым эффекта — дозы на целом ряде объектов, преимущественно относящихся бактериям и животным [1]; однако в отношении пресноводных организмов данных еще очень мало [2—4]. В связи с этим, а также ввиду большого значения хлореллы как объекта в разных областях современной биологии нами проведены опыты по γ-облучению этой водоросли Со⁶⁰

Материалом исследования служили культуры Chlorella vulgaris Веуег. в водном питательном растворе по Артари. Применяли однократное γ-облучение от достаточно мощного источника Со⁶⁰ в дозах от 0,5 до 50 кр. Проведено два опыта, в которых каждый вариант был поставлен в пяти повторностях. Отбор проб с определением числа клеток на 1 мл культуры производили через 1—7, 10, 14, 18 суток. В одном из опытов исходная плотность культуры составляла 120000 клеток на 1 мл,

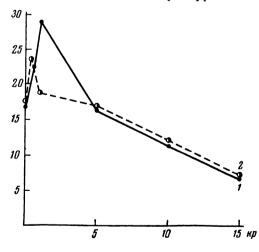


Рис. 1. Кривые эффекта — дозы для числа клеток культуры хлореллы на 18-й день после облучения из первого (1) и второго (2) опытов По оси ординат — количество клеток в 10⁶ на 1 мл культуры; по оси абсцисс — доза облучения, кр

а в другом — 25 000 клеток на 1 мл. В течение всего опыта культуры содержали в комнатных условиях и продували атмосферным воздухом Ввиду достаточно малого разброса результаты усреднялись по всем повторностям каждого варианта.

На рис. 1 приведены кривые эффекта — дозы двух опытов на 18-й день культивирования. Облучение в дозах 0,5-1 кр в обоих опытах оказало некоторое стимулирующее действие: в этих вариантах плотность культур к концу опыта несколько превышала KOHTроль. Дальнейшее повышение облучения прогрессивно угнетало развитие культур и. начиная с дозы в 25 кр, оказывало летальное действие. Ре-

зультаты обоих опытов дали хорошее совпадение; лишь стимуляционный пик падает в одном опыте на дозу в 500 p, а в другом — на 1000 p, дальнейшее же угнетение в обоих опытах протекает параллельно. Поэтому допустимо усреднить результаты обоих опытов и вычислить кривую эффекта — дозы в процентах угнетения облученных культур по сравнению с контролем. Усредненная кривая эффекта — дозы приведена на рис. 2.

В таблице и на рис. 3 приведена динамика развития культур хлореллы в одном из опытов. Как видно, облучение в дозах 0,5 и 1 кр во всех временных точках приводит к увеличению количества клеток в культуре, а облучение в больших дозах особенно к концу опыта — к отставанию от контроля. Облучение в дозе 25 кр практически не дало со вто-

рого дня культивирования никакого достоверного прироста за все время опыта. Для проверки полученных данных на рис. 4 приведены из второго опыта такие же кривые прироста культур для контроля и облучения в дозах 1,10 и 25 кр. Эти кривые еще яснее показывают, что кривая прироста из варианта, получившего 1 κp , на всем протяжении лежит выше контрольной, а кривая из варианта, получившего 10 кр, на всем протяжении лежит ниже контрольной, в то время как вариант, получивший 25 кр, не дав до пятого дня никакого прироста, к седьмому дню вымер.

Таким образом, результаты вышеописанных опытов, прежде всего, намечают диапазон доз у-облучения

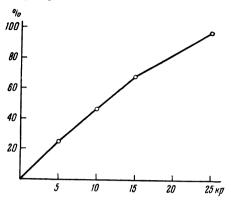


Рис. 2. Усредненная кривая эффекта — дозы из двух опытов с хлореллой По оси ординат — число убитых клеток, %; по оси абсцисс — доза облучения, кр

(до $25 \ \kappa p$), в пределах которого после однократного облучения возможно развитие культур хлореллы. Практически полный летальный эффект достигается при облучении в дозах около $25 \ \kappa p$; при такой дозе в одном из опытов культуры полностью погибли к седьмому дню (все пять повторностей), а в другом хлорелла хотя и продержалась примерно на

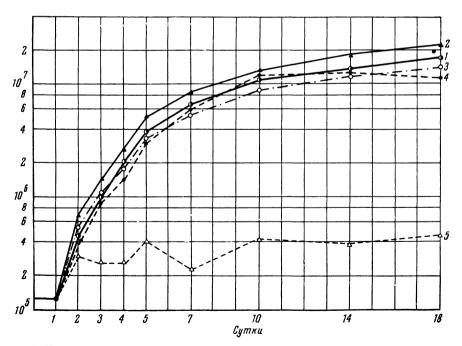


Рис. 3. Кривые роста культуры хлореллы в течение 18 суток после однократного γ -облучения (2-й опыт)

По оси ординат — число клеток в 1 мл культуры, по оси абсцисс — время после облучения, сутки; I — контроль, облучение в дозах: 2 — 0.5 к ρ , 3 — 5 к ρ , 4 — 10 к ρ , 5 — 25 к ρ

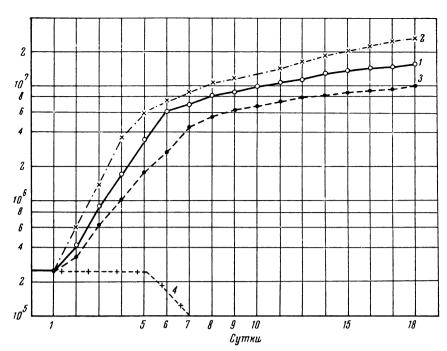


Рис. 4. Кривые роста культуры хлореллы в течение 18 суток после облучения (1-й опыт)

По оси то же, что на рис. 3; I — контроль, облучение в дозах: 2-1 κp , 3-10 κp , 4-25 κp

уровне исходной плотности культуры в течение всего опыта, но прироста не дала. Как и в отношении водорослевого перифитона [5, 6], после применения слабых доз (500-1000 p) хлорелла дала некоторую стимуляцию роста культур, не затухающую в течение всей длительности опыта (18 дней).

Развитие культур Chlorella vulgaris после ү-облучения в различных дозах Количество клеток хлореллы — в тыс. на 1 мл культуры, исходная плотность культур — 125 000 кл. на 1 мл

Доза облу- чения, <i>кр</i>	Время с начала опыта, сутки								
	1	2	3	4	5	7	10	14	18
Контроль 0,5 1 5 10 25 50	125 125 135 125 125 125 125 125	440 680 750 540 420 325 125	930 1420 1660 1045 950 275 125	2035 2750 2650 1840 1350 275	3860 5330 4630 3460 3250 400	6350 8580 7430 5420 5490 225	10050 12305 10500 9380 11900 425	13770 19170 17140 13200 13730 380	17860 22300 19510 14900 12000 450

ЛИТЕРАТУРА

- 1. Back Z. M. and P. Alexander, Fundamentals of radiobiology, L., 1955.
- 2. Мусаев К. Ю., Тез. докл. Всес. совещ. по культивированию одноклеточных водорослей. 1961.
- 3. Bonhom K. et al. Science, 106, 245, 1957.
- 4. Donaldson L. R., Foster R. F., The effects of atomic radiation on oceanography and fischeries. Waschington, 1957.
- 5. Тимофеева-Ресовская Е. А., Бюлл. Уральского отд. МОИП, 1, 1958.
 6. Тимофеева-Ресовская Е. А., Распределение радиоизотопов по основным компонентам пресноводных водоемов, Изд. УФАН СССР, Свердловск, 1963.