ТЕОРЕТИЧЕСКИЕ ВОПРОСЫ ФИТОИНДИКАЦИИ

ОТДЕЛЬНЫЙ ОТТИСК

ИЗДАТЕЛЬСТВО «НАУКА» Ленинградское отделение Ленинград 1971

Закономерности накопления редких элементов некоторыми высшими растениями и их значение для поисков рудных месторождений

П. Л. Горчаковский и Н. Н. Никонова

(Институт экологии растений и животных УФАН СССР)

Присутствие и концентрация редких элементов в растениях в какой-то степени зависит от содержания их в поверхностном слое горной породы и в почве, что дает возможность использовать растения в качестве индикаторов месторождений редких элементов при геологических изысканиях. Однако при этом возникает ряд трудностей. Даже в районе месторождений того или иного элемента, представляющих промышленную ценность, далеко не все виды растений накапливают этот элемент в концентрациях, достаточных для определения его присутствия методом спектрального анализа. Тот или иной элемент может содержаться в коре выветривания горной породы, но отсутствовать в самом поверхностном слое почвы, где располагаются корневые системы некоторых растений. Слабо разработана еще методика отбора проб растений для спектрального анализа (какие растения и какие их органы брать для анализа, в какое время и т. п.). В разных геохимических и ботанико-географических подразделениях территории набор концентраторов, или специфических накопителей того или иного элемента, неодинаков. Поэтому необходимо выяснить региональные особенности накопления редких элементов растениями, выявить растения — концентраторы тех или элементов применительно к определенным геохимическим и ботаникогеографическим областям.

Мы ставим перед собой задачу на примере одного из районов западного склона Южного Урала сопоставить содержание редких элементов — бериллия, молибдена, иттрия, циркония, лития, ниобия и титана — в почве и растениях, выявить общие закономерности накопления редких элементов сосудистыми растениями и проследить сезонные изменения содержания редких элементов в горизонтах почвы и в органах растений.

Участок, где проводилось исследование, расположен на склоне увала высотой 780 м над ур. м., вытянутого с северо-запада на юго-восток. Размер участка — 0.7×1.8 км, абсолютная высота — 600—650 м.

В геологическом отношении участок расположен вблизи региональных структур Башкирского и Уральского антиклинориев. Рудопроявление связано с залежами туфов пироксен-амфиболовых порфиритов, которые залегают среди филлитовидных сланцев бакальской свиты. Расположен участок в полосе горных сосновых лесов западного склона Южного Урала.

В растительном покрове преобладает лес из осины (Populus tremula L.) и березы бородавчатой (Betula pendula Roth.) с примесью сосны обыкновенной (Pinus silvestris L.) и лиственницы Сукачева (Larix Sukaczewii Dyl.). Древостой молодой (10—25 лет), вторичного происхождения, сформировавшийся в результате вырубки соснового леса с единичной примесью лиственницы. Местами преобладает осина высотой 8—10 м, диаметром 12 см, местами береза высотой 5—6 м, диаметром 4—6 см. Из кустарников встречается черемуха обыкновенная (Padus racemosa L.) и шиповник коричный (Rosa cinnamomea L.). Травяной покров довольно мощный, состоит из лесных и лугово-лесных злаков, некоторых видов папоротника и разнотравья; преобладают Calamagrostis arundinacea (L.) Roth., Milium effusum L., Pteridium aquilinum (L.) Kuhn., Aconitum excelsum Reichb., Trollius europaeus L., Lathyrus vernus Bernh., Rubus saxatilis L., Filipendula ulmaria (L.) Maxim., Chamaene-

rium angustifolum (L.) Scop., Bupleurum aureum Fisch., Polygonum bistorta L., Galium boreale L.

Исследование проводилось в два этапа.

1-й этап (1964 г.). На участке были заложены 3 профиля вкрест простирания предполагаемых (по данным геологической съемки) рудных зон. По профилям через каждые 20 м над рудными зонами и через 40 м вне этих зон отбирались образцы почв и по 45 видов сосудистых растений для последующего определения в лаборатории содержания в них вышеуказанных редких элементов. На основании обработки полученных данных были более точно очерчены рудные зоны и отобраны виды растений, накапливающие в больших концентрациях те или иные редкие элементы.

2-й этап (1965 г.). Непосредственно на рудных зонах были заложены три основных площадки размером 50×40 м, одна на северном склоне, а две — на южном. Кроме того, была выделена контрольная площадка вне зон. На площадках производился отбор растительных образцов через каждые 15 дней. Из древесных растений брались образцы осины, лиственницы Сукачева, а из травянистых — орляка [Pteridium aquilinum (L.) Kuhn.], вейника тростниковидного [Calamagrostis arundinacea (L.) Roth.], бора развесистого (Milium effusum L.), чины Гмелина [Lathyrus gmelinii (Fisch.) Fritsch], первоцвета крупночашечного (Primula macrocalyx Bge.) и скерды сибирской (Crepis sibirica L.). В период массового цветения упомянутых видов растений отбирались образцы по органам (листья, стебли, цветы, корни или корневища) для определения содержания в них редких элементов. Раз в месяц по горизонтам брались почвенные образцы на всех площадках. Образцы растений высушивались, а затем сжигались. Определение содержания редких элементов в почве и золе растений производилось спектральным методом.

В табл. 1 приведен перечень 45 видов сосудистых растений, в образцах которых методом спектрального анализа определялось содержание редких элементов. Оказалось, что из них бериллий накапливают 23 вида, молибден — 36, литий — 7, цирконий — 28, иттрий — 13, ниобий — 4, титан — 45.

Усредненные данные о содержании редких элементов в почве приведены в табл. 2. Как видно, по профилю почвы цирконий распределен равномерно, другие же элементы (бериллий, молибден, ниобий, иттрий, литий и титан) имеют более высокую концентрацию в нижних горизонтах почвы.

К концу лета наблюдается миграция бериллия из нижних горизонтов почвы в верхние:

							15 V I	15 VII	15 VIII
Гор.	A						0.001%	0.002%	0.002%
Гор.	В						0.003%	0.002%	0.001%

Содержание остальных изученных редких элементов в почве в течение вегетационного периода остается более или менее стабильным.

Представление о том, в какой степени накопление бериллия и молибдена некоторыми растениями зависит от концентрации этих элементов в почве, дает табл. 3.

Как видно, имеется прямая линейная зависимость между содержанием бериллия и молибдена в почве и накоплением их рядом видов растений.

Распределение накопленных редких элементов по органам растений неравномерно. Бериллий концентрируется в осине следующим образом (табл. 4).

	Всего проана-	- Itomirtoribo oopaaqob o anemenrana								
Семейства, виды	лизиро- вано об- разцов	Ве	Мо	Zr	Y	Ti	Li	Nb		
Сем. Polypodiaceae										
Pteridium aquilinum (L.) Kuhn.	30	3	7	1	l –	30	_	_		
Сем. Pinaceae					į					
Pinus silvestris L.: древесина кора ветви и хвоя	16 16 11	6 2 4	4 1 5	6 5 3	_ _ _	16 16 11	_ 	_ _ _		
Larix sukaczewii Dylis: древесина	17 20 11	9 7 6	4 4 3	8 6 11	2 2 5	17 20 11	_ _ _	_ _ _		
Abies sibirica Ldb.: ветви и хвоя	2	1	1	1	-	2	-	-		
Cem. Gramineae										
Brachypodium pinnatum (L.) Beauv	2	_	1	<u> </u>	_	2	_	_		
Calamagrostis arundinacea (L.) Roth	35 1 3 10	4 - -	27 1 3 6	12 1 - 4	2 1 -	35 1 3 10	1 - -	1 - -		
Сем. Liliaceae										
Veratrum Lobelianum Bernh.	1	-	_		-	1	-	_		
Сем. Salicaceae										
Salix sp.: листья	2 2	1 2	2 1	<u>-</u>	_	2 2	_	_		
Populus tremula L.: древесина кора ветви листья	15 15 12 12	11 6 5 4	4 4 1 1	2 2 - -	- - 1	15 15 12 12	1 - -	1 - -		
Сем. Betulaceae										
Betula pendula Roth.: древесина кора ветви листья	30 30 25 25	15 7 9 3	15 6 4 3	11 9 4 5	4 4 3 —	30 30 25 25	 	_ _ _ _		
Сем. Polygonaceae										
Polygonum alpinum All	4	2	1	_	_	4	-	_		
Сем. Ranunculaceae										
Pulsatilla patens (L.) Mill Delphinium elatum L	1 1 39 1	1 - 8 -	1 13 —	$\begin{array}{c c} 1 \\ - \\ 2 \\ - \end{array}$	_ _ _	1 1 39 1	<u>-</u> 1	- 1 -		

	Всего проана-	1-								
Семейства, виды	лизиро- вано об- разцов	Ве	Мо	Zr	Y	Ti	Li	Nb		
Сем. Rosaceae										
Spirea crenata L	1 4	-	_	_	_ 2	1 4	_ _	-		
BETBM Filipendula ulmaria (L.) Maxim. Sanguisorba officinalis L. Rubus idaeus L.	4 6 7 1	2 1 1 —	2 4 1	1 3 1 1	1 1 1 -	4 6 7 1		_ _ _		
Сем. Leguminosae			}					<u> </u>		
Cytisus ruthenicus Fisch	2 2 13	- 1 10	1 1 11	$\frac{1}{3}$	- - 3	2 2 13	_ _ _	=		
Fritsch	3 11	2 4	2 6	1 3	1 3	3 11	1 —	=		
Сем. Geraniaceae										
Geranium silvaticum L	5	1	2	1	_	5	_	_		
Cem. Onagraceae							İ			
Chamaenerium angustifolium (L.) Scop	2	_	2	_		2	_	_		
$egin{array}{c} Cem. & Umbelliferae \end{array}$						İ	<u> </u>			
Bupleurum aureum Fisch	26 17 5 2 40	1 - - 4	13 13 3 1 23	1 1 1 - 2	- - - 1	26 17 5 2 40	_ _ _ _	_ _ _ _		
Cem. Primulaceae		1						ĺ		
Primula macrocalyx Bge	1	1	1	1	_	1	1	_		
Сем. Boraginaceae			 				}			
Pulmonaria mollisima A. Kerner	5	_	-	2		5	-	-		
Сем. Labiatae										
Origanum vulgare L	3	_	2	-	_	3	-	-		
Сем. Campanulaceae										
Adenophora liliifolia (L.) Bess.	4	1	2	-	-	4	-	-		
Сем. Compositae			1			1				
Artemisia vulgaris L. Cirsium heterophyllum (L.) Hill. Tussilago farfara L. Achillea millefolium L. Crepis sibirica L. Hieracium sp. Количество видов, содержащих	1 2 1 2 29 2	- - - 3 -	1 1 16 -	- 1 1 2 -	- - 1 - -	1 2 1 2 29 2	- - - 1 -	- - - 1		
отдельные элементы		23	36	28	13	45	8	4		

Таблица 2 Содержание редких элементов в почве, среднее арифметическое (в $^{0}/_{0}$)

Мощность горизонтов почвы (см)	Ве	Мо	Zr	Nb	Y	Li	Ti
0—25	0.0034	0.00028	0.094	0.071	0.016	0.0042	0.383
25—40	0.002	0.00026	0.090	0.043	0.010	0.009	0.816
40—80	0.0052	0.00064	0.094	0.090	0.021	0.0073	0.863
80 и глубже	0.0098	0.001	Не опреде-	0.096	0.029	0.0093	0.939

Таблица 3 Накопление растениями бериллия и молибдена в зависимости от содержания их в почве, в $^0/_0$ от веса золы

	Бери	плий	Молибден			
Название растения	в почве	в золе растений	в почве	в золе растений		
Скерда сибирская (кор- невища)	0.002 > 0.0003 0.002 0.0001	> 0.0003 0.0001 0.0002 След	0.003 След — —	0.006 0.001 < 0.001 0.0003		
Первоцвет крупночашеч- ный (корни)	$\begin{array}{c} 0.003 \\ 0.0003 \\ > 0.001 \\ 0.0001 \end{array}$	0.0003 0.0002 > 0.0001 След	0.003 След — —	> 0.003 < 0.001 0.001 0.001		

Таблица 4 Изменение содержания бериллия в различных частях осины в период вегетации

Возраст	Части	Содержание бериллия в различные сроки (в % от веса золы)							
осины	растений	15 VI	1 VII	15 VII	31 VII	16 VIII	25 VIII		
Молодая (8—10 лет) Старая (30—40 лет)	Листья Ветви Кора Древесина Кора Древесина	< 0.0001 > 0.0001 < 0.0001 0.0006 0.0002 0.0006	0.0001 0.0003 < 0.0001 0.0003 > 0.0003 > 0.0003	<pre>0.0001 < 0.0001 0.0001 0.0001 0.0002 0.0002</pre>	0.0002 0.0003 0.0003 > 0.0003 0.0004 0.0002	> 0.0001 0.0002 0.0001 0.0003 0.0003 > 0.0003	0.0002 0.0001 0.0001 0.0003 0.0001 0.0003 -0.0006		

Из этих данных следует, что наиболее высокая концентрация бериллия обнаружена в древесине осины независимо от возраста дерева. Сезонные колебания содержания бериллия в органах осины незначительны (табл. 5). Травянистыми растениями бериллий (табл. 6) накапливается в большом количестве в подземных органах даже при невысоком содержании его в почве (0.0001%).

Концентрация бериллия в корнях и корневищах скерды сибирской возрастает к концу периода вегетации до 0.003%, наблюдается увеличение ее в подземных органах борца высокого, хотя и незначительное — до 0.002%. В корнях и корневищах чины Гмелина и орляка содержание бериллия остается постоянным в течение лета. По всей вероятности, у растений с поверхностной корневой системой происходит возрастание концентрации бериллия к концу вегетационного периода в связи с се-

Названи	ия растений	Даты наблюдений							
ии	х частей	15 VI	1 VII	15 VII	31 VII	16 VIII	25 VIII		
Осина молодая (6—8 лет)	{ древесина кора	< 0.001	0.006	0.003	0.001	0.001 Следы	> 0.001 0.001		
Осина старая (30-40 лет)	{ древесина кора	< 0.001 0.001	След 0.001	< 0.001 0.001	< 0.001 0.001	0.002 0.002	0.001 > 0.001		
Листвен- ница Су- качева	{ ветви и хвоя кора древесина	Следы Следы —	 След 0.006	Следы 0.0006 0.001	 Следы Следы	_ _ _	_ _ _		

Таблица 6 Накопление бериллия в органах травянистых растений за период вегетации (в $^0/_0$ от веса золы)

Название растения	Листья	Стебли	Цветы	Корни, корневища
Чина Гмелина Борец высокий Скерда сибирская	$ < 0.0001 \\ 0.0001 \\ < 0.0001 $	Следы <0.0001 <0.0001	Следы < 0.0001 —	> 0.0003 0.0001 > 0.0003

зонной миграцией этого элемента в почве и увеличением его в поверхностном горизонте. Аналогичные данные получены о накоплении растениями других редких элементов.

В листьях и ветвях осины содержание молибдена незначительно (в виде следов или совсем не обнаружен). К концу вегетационного периода наблюдается увеличение концентрации молибдена в корневищах чины Гмелина до 0.03%. Концентрация элемента у других видов остается стабильной.

Иттрий содержится в почве обычно в концентрации 0.006%, при более низкой концентрации в почве (0.003% и ниже) в растениях он не обнаруживается. Растения накапливают иттрия в два раза меньше, чем его содержится в почве. Его часто накапливают осина (древесина), лиственница Сукачева (ветви и хвоя). К концу периода вегетации наблюдается незначительное увеличение содержания иттрия в чине Гмелина и корневищах скерды сибирской.

Среднее содержание циркония в почве 0.06%, максимальное — 0.3%. Этот элемент часто встречается в лиственнице Сукачева (ветви и хвоя, древесина), в березе (древесина), а в вейнике тростниковидном его концентрация равна 0.003%. Его содержание увеличивается в корневищах скерды сибирской к концу вегетации от 0.01% до 0.03%. В корнях и корневищах чины Гмелина, борца высокого, орляка, первоцвета крупночашечного цирконий найден в концентрации 0.003%, и это количество сохраняется без изменения в течение лета.

Литий в почве содержится обычно в концентрации 0.03%, максимально — до 0.1%. Даже при отсутствии лития в почве он обнаруживается в растениях. Наивысшая его концентрация (0.06-0.3%) отмечается в осине (древесина), лиственнице Сукачева (древесина), борце

высоком, скерде сибирской, лабазнике вязолистном, первоцвете крупночашечном (подземные органы), вейнике тростниковидном (соцветия).

Ниобий был обнаружен в почве в концентрации в среднем 0.03% (максимально до 0.06%). При концентрациях ниобия в почве ниже 0.03% он не фиксируется растениями и лишь в случае более высокой концентрации накапливается некоторыми видами: вейником тростниковидным — 0.006%, борцом высоким (подземные органы) — 0.003%, осиной (древесина) — 0.006%. В корневищах скерды сибирской концентрация ниобия увеличивается от 0.01 до 0.03% к концу лета.

В почве титан обнаружен во всех горизонтах с содержанием 0.3-1%. Он найден также во всех опробованных видах. Наивысшая концентрация (0.1-0.3%) отмечается у древесных: у березы бородавчатой (кора, древесина, ветви), сосны (древесина), осины (кора), лиственницы Сукачева (ветви и хвоя, древесина, кора). До 0.1% найден титан у травянистых: у скерды сибирской, вейника тростниковидного, орляка, лабазника вязолистного.

Итак, накопленные редкие элементы распределяются по органам растений неравномерно. У травянистых растений они обычно накапливаются в несколько большем количестве в корнях и корневищах, значительно реже — в соцветиях, а у древесных — в древесине.

Выявлены растения — специфические накопители (концентраторы) отдельных редких элементов; в их органах отмечается более высокая концентрация отдельных элементов, чем в почве, и эти элементы накапливаются растениями, даже если в почве они обнаруживаются лишь в виде следов или совсем не обнаруживаются спектральным анализом. Концентраторами молибдена являются чина Гмелина, скерда сибирская (корневища) и лиственница Сукачева (древесина), концентраторами лития — осина (древесина) и вейник тростниковидный (соцветия).

Установлена сезонность колебаний в накоплении отдельных элементов органами различных видов растений. Чаще всего происходит увеличение содержания редких элементов к концу периода вегетации в подземных органах растений.