ОБЩАЯ БИОЛОГИЯ

УДК 591.151/.157+591.3+575.224+599.32

ХРОМОСОМНАЯ НЕСТАБИЛЬНОСТЬ И АСИММЕТРИЯ ЧЕРЕПА У ПОЛИМОРФНОЙ ПО ОКРАСКЕ МЕХА ОБЫКНОВЕННОЙ СЛЕПУШОНКИ ELLOBIUS TALPINUS PALLAS, 1770

© 2006 г. Э. А. Гилёва, академик В. Н. Большаков, Л. Э. Ялковская, Н. В. Синёва

Поступило 29.05.2006 г.

Гены, контролирующие окраску волосяного покрова у млекопитающих, нередко обладают плейотропным эффектом: так, в лабораторных условиях показано, что они оказывают влияние на углеводно-липидный обмен, массу тела, особенности поведения и т.д. [1-3]. В природных популяциях некоторых грызунов наблюдается полиморфизм по окраске меха, но его связь с другими фенотипическими характеристиками, которые, в частности, могут иметь адаптивное значение, практически не изучена. Информативной моделью для исследования такой связи является обыкновенная слепушонка – роющий грызун, у которого на значительной части ареала обнаружено высокое разнообразие окраски, сводящееся к трем типам: полностью черные, или меланисты; полностью бурые; переходные (волосяной покров состоит из чередующихся черных и бурых участков, широко варьирующих по размеру и локализации [4]). Меланизм наследуется как моногенный рецессивный признак [5], а бурая и переходная окраски, судя по всему, зависят от нескольких генов. По всей вероятности, к этим генам относятся известные у многих грызунов MC1R (рецептор меланокортина, стимулирующего активность меланоцитов) и его антагонист Agouti [6, 7].

Частоты цветовых морф в природных популяциях обыкновенной слепушонки Южного Урала и Зауралья имеют четкий географический тренд (возрастание частоты меланизма от степи к лесной зоне) [4], так что полиморфизм по окраске у Е. talpinus может быть ассоциирован с вариациями компонентов приспособленности. В этом контексте мы сравнили уровни геномной и онтогенетической нестабильности у цветовых морф слепушонки. В качестве показателей геномной нестабильности использовали частоты хромосомных нарушений в клетках костного мозга, а о нестабильности онтогенеза судили по степени асимметрии билатераль-

Институт экологии животных

ных структур черепа, включая флуктуирующую асимметрию (ФА), т.е. ненаправленные различия размеров признака на правой и левой стороне черепа, и асимметричность формы нижней челюсти, оцененную с помощью метода геометрической морфометрии. Этот метод позволяет сравнивать форму объектов сложной конфигурации, которая описывается с помощью набора меток (ландмарок) на плоскостной проекции объекта. На основе расположения меток строится общее для сравниваемых объектов пространство (сначала многомерное, а затем двумерное или трехмерное), в котором располагаются все объекты и общая для них эталонная форма. Показателем различий в форме объектов служит разность их расстояний до общего эталона. Для сравнения формы биологических структур рекомендуется использование расстояний в тангенциальном пространстве. Важным преимуществом геометрической морфометрии является независимость получаемых оценок от абсолютных размеров объекта [8].

Материалом послужили 84 слепушонки, отловленные в Куртамышском районе Курганской области (55°01' с.ш., 63°43' в.д.) в 1998-2000 гг. Препараты метафазных хромосом были приготовлены по стандартной методике из костного мозга. Частоту хромосомных нарушений (структурных аберраций, пробелов, анеуплоидии и полиплоидии) учитывали в 50-100 клетках у каждого животного. Об уровне онтогенетической нестабильности судили по степени асимметричности черепа, применяя методологические подходы Палмера и Стробека [9]. Для анализа флуктуирующей асимметрии (ФА) десяти краниометрических признаков (коронарные длины M¹ и M₃, альвеолярные длины M¹, M₁, M₃, верхнего и нижнего зубного рядов, длина резцового отверстия, высота и длина нижней челюсти) измерения проводили с помощью микроскопа МБС-10 в четырех повторностях на каждой стороне черепа. Для всех признаков в каждой из сравниваемых групп был проведен двухфакторный дисперсионный анализ (смешанная модель: сторона – фиксированный фактор, особь - случайный). Доказательством существования ФА служила значимость взаимодей-

Уральского отделения Российской Академии наук, Екатеринбург

Рис. 1. Схема расположения меток на нижней челюсти: *1* – верхний край альвеолы резца; *2* – наиболее низкая точка диастемы; *3* – передний край альвеолы M₁; *4* – задний край альвеолы M₃; *5* – нижний край нижнечелюстного отверстия; *6* – верхняя точка сочленовного отростка; *7* – наиболее высокая точка нижней вырезки; *8* – наиболее низкая точка углового отростка; *9* – нижний край альвеолы резца.

ствия "сторона × особь", которая была продемонстрирована для всех признаков во всех выборках. Для всех выборок было показано отсутствие антисимметрии и при наличии направленной асимметрии введены соответствующие поправки. В качестве показателя ФА индивидуальных признаков был использован безразмерный индекс ФА2 [9], который представляет собой отношение разности размеров признака на правой и левой сторонах к среднему размеру признака и позволяет исключить влияние размеров черепа на оценки ФА. Для получения интегральной оценки ФА индексы ФА2 отдельных признаков усредняли сначала для каждой особи, а затем для всех особей, входящих в выборку [10].

Оцифрованные изображения нижней челюсти для геометрической морфометрии получали с помощью цифровой камеры Nikon Coolpix 990 через окуляр микроскопа Stemi 2000-С ("Carl Zeiss") при постоянном увеличении (6.5×). С использованием пакета программ TPS [11] на изображения правой и левой ветвей нижней челюсти (разрешение 300 точек/дюйм) наносили по 9 меток (рис. 1). Для каждого животного на основании этих меток конструировалась их эталонная конфигурация и вычислялись тангенциальные дистанции правой и левой ветвей до общего эталона. Эта процедура повторялась трижды, полученные значения тангенциальных дистанций усреднялись для каждой стороны и вычислялась разность между ними, которая и служила показателем асимметричности нижней челюсти. При проверке статистических гипотез применяли 5%-ный уровень значимости.

Переходя к описанию полученных результатов, нужно отметить, что у Е. talpinus на Урале и в Зауралье меланисты идентифицируются однозначно, а подразделение остальных зверьков на бурых и переходных в определенной степени субъективно, поскольку чаще они образуют непрерывный ряд по окраске меха. Поэтому статистические сравнения были проведены двумя способами: для всех трех морф – по отдельности, и для черных - с нечерными, т.е. с объединенной группой бурых и переходных. Межгодовые различия по частотам хромосомных нарушений (1998, 1999, 2000 гг.) и ФА мерных признаков (1998, 1999 гг.) оказались незначимыми (P = 0.082 - 0.937), и данные за разные годы были объединены (табл. 1). В обоих вариантах сравнений различия цветовых морф по частотам структурных и числовых хромосомных мутаций не достигают 5%-го уровня значимости, хотя при объединении бурых и переходных слепушонок в одну группу нечерных тенденция к повышенной геномной нестабильности у меланистов более отчетлива. Еще более явной эта тенденция становится после суммирования частот аберрантных клеток и клеток с пробелами: подобное объединение рекомендуется рядом авторов, поскольку в последнее время появляется все больше данных о единой природе пробелов и структурных хромосомных аберраций (например, [12]). Такой объединенный показатель у меланистов значительно больше, чем у нечерных слепушонок, т.е. двух других морф ($\chi^2 = 4.217, df = 1, P =$ = 0.040).

По ФА краниометрических промеров между цветовыми морфами слепушонки нет статистически значимых отличий. Усредненный по 10 признакам индекс ФА2 имеет тенденцию к более высоким значениям у черных слепушонок в обоих вариантах сравнения, особенно при суммирова-

ДОКЛАДЫ АКАДЕМИИ НАУК том 410 № 5 2006

	Хромосомные нарушения, средняя частота клеток, %				Флуктуирующая асимметрия		
Окраска меха	число животных (клеток)	хромосомные аберрации	анеу- и полипло- идность	пробелы	число животных	средний $\Phi A2 \times 10^3$	
I вариант сравнения							
Черная	42 (2840)	1.94	0.46	3.17	14	18.18	
Бурая	20 (1700)	1.29	0.71	3.00	13	14.33	
Переходная	23 (2050)	1.37	0.44	2.24	16	15.31	
$\chi^2 (df = 2)$		3.782	1.619	3.915	$F = 1.807 \ (df = 2/40)$		
Р		0.151	0.445	0.141	P = 0.177		
II вариант сравнения							
Черная	42 (2840)	1.94	0.46	3.17	14	18.18	
Нечерная	43 (3750)	1.33	0.56	2.59	29	14.87	
$\chi^2 (df = 1)$		3.751	0.329	1.988	$t = 1.858 \ (df = 41)$		
Р		0.053	0.566	0.159	P = 0.070		

Таблица 1. Частота хромосомных нарушений и индексы ФА2, усредненные для 10 краниометрических признаков, у слепушонок с разной окраской меха

нии данных по бурым и переходным животным, хотя и в этом случае 5%-ный уровень значимости не был достигнут.

Более четкими оказались различия между цветовыми морфами по асимметрии формы нижней челюсти (и, следовательно, по стабильности развития), выявленные с помощью геометрической морфометрии (табл. 2). Межгодовые различия по тангенциальному показателю асимметрии были статистически значимыми, но и в 1998, и в 1999 годах конфигурация нижней челюсти была достоверно более асимметрична у меланистов, чем у животных двух других цветовых морф из той же популяции. Такое соотношение наблюдается в обоих вариантах сравнений - как при рассмотрении бурых и переходных особей по отдельности, так и при их объединении. Значимость взаимодействия "год отлова – окраска меха" связана с тем, что показатель асимметрии у черных особей по сравнению с нечерными в разные годы был повышен в различной степени.

Таким образом, для слепушонок-меланистов характерен повышенный уровень онтогенетической и, с некоторыми оговорками, хромосомной нестабильности. Наиболее убедительны данные о более асимметричной форме нижней челюсти у черных слепушонок, чем у зверьков с другой окраской шерсти. Различия цветовых морф по степени геномного и онтогенетического гомеостаза связаны, по всей вероятности, с интегрированностью меланинового метаболизма в многочисленные обменные процессы (в том числе гормональной природы), участвующие как в регуляции мутационного процесса, так и в формировании краниальных структур. В.Н. Большаков и др. [13] показали, что слепушон-

ДОКЛАДЫ АКАДЕМИИ НАУК том 410 № 5 2006

Таблица 2. Тангенциальные дистанции, характеризующие уровни билатеральной асимметрии нижней челюсти слепушонок, с учетом года отлова (А) и окраски меха животных (В). В скобках приведены обозначения факторов в схеме дисперсионного анализа

Год отлова	Окраска меха	Тангенциальный показатель асим- метрии*			
	I вариант сравнения				
1998	Черная (N = 4)	0.0217			
	Бурая (<i>N</i> = 3)	0.0043			
	Переходная (<i>N</i> = 8)	0.0097			
1999	Черная (N = 10)	0.0080			
	Бурая (N = 10)	0.0067			
	Переходная ($N = 6$)	0.0042			
$F_{\rm A}; P (df = 1/35)$		4.433; 0.043			
$F_{\rm B}; P (df = 2/35)$		4.694; 0.016			
	$F_{\rm AB}; P (df = 2/35)$	2.754; 0.077			
	II вариант сравнения				
1998	Черная (N = 4)	0.0217			
	Нечерная (N = 11)	0.0083			
1999	Черная (N = 10)	0.0080			
	Нечерная (N = 16)	0.0057			
	$F_{\rm A}; P (df = 1/37)$	8.836; 0.005			
	$F_{\rm B}; P \; (df = 1/37)$	8.332; 0.006			
	$F_{\rm AB}; P \; (df = 1/37)$	4.190; 0.048			

*Разность между тангенциальными дистанциями правой и левой ветвей нижней челюсти от общего эталона. ки-меланисты отличаются от остальных зверьков по некоторым биохимическим и физиологическим характеристикам. В частности, фоновые уровни стрессовых гормонов 11-ОКС в плазме крови черных зверьков были заметно выше, чем у особей с бурой и переходной окраской. Возможно, именно напряженный гормональный статус интенсифицировал хромосомную нестабильность у меланистов. Мутагенный эффект стрессовых гормонов был продемонстрирован как в лабораторных, так и в природных популяциях грызунов [14, 15].

Приносим благодарность за помощь в сборе и обработке материала Н.Г. Евдокимову, А.В. Бородину, С.В. Зыкову.

Работа выполнена при финансовой поддержке грантов РФФИ (05–04–48373) и РФФИ–Урал (04–04–96124), а также гранта "Ведущие научные школы РФ" (2006–РИ–112.0/001/337).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Hayssen V. //* J. Comp. Psychol. 1997. V. 111. № 4. P. 419–423.
- Sviderskaya E.V., Novak E.K., Swank R.T., Bennett D.C. // Genetics. 1998. V. 148. № 1. P. 381–390.
- Шевченко А.Ю., Макарова Е.Н., Бажан Н.М. и др. // Рос. физиол. журн. 2003. Т. 89. № 7. С. 906– 908.

- Евдокимов Н.Г. Популяционная экология обыкновенной слепушонки. Екатеринбург: Изд-во "Екатеринбург", 2001. 144 с.
- 5. Чепраков М.И., Евдокимов Н.Г., Глотов Н.В. // Генетика. 2005. Т. 41. № 11. С. 1552–1558.
- 6. Barsh G.S. // Trends Genet. 1996. № 12. P. 299–305.
- 7. *Hoekstra H.E., Nachman M.W.* // Mol. Ecol. 2003. № 12. P. 1185–1194.
- 8. *Павлинов И.Я.* // Журн. общ. биол. 2000. Т. 61. № 6. С. 583–600.
- 9. *Palmer A.R., Strobeck C.* Developmental Instability: Causes and Consequences. N. Y.: Oxford Univ. Press, 2003. P. 279–319.
- Захаров В.М., Баранов А.С., Борисов В.И. и др. Здоровье среды: методика оценки. М.: Центр экол. политики России, 2000. 66 с.
- 11. *Rohlf F.J.* TPS. Program. Vers. 1.39. N. Y.: Dept. Ecol. Evol.; State Univ. New York, 2003. P. 11794–5245.
- 12. Paz-y-Mino C., Davalos M.V., Sanchez M.E. et al. // Mutat. Res. 2002. V. 516. № 1/2. P. 57–61.
- 13. Большаков В.Н., Евдокимов Н.Г., Мошкин М.П. и др. // ДАН. 1989. Т. 308. № 2. С. 500–502.
- 14. Скорова С.В., Назарова Г.Г., Герлинская Л.А. // Изв. СО РАН. 1986. В. 3. № 18 (429). С. 91–95.
- 15. Дюжикова Н.А., Быковская Н.В., Вайдо А.И. и др. // Генетика. 1996. Т. 32. № 6. С. 851–853.