Теоретические проблемы экологии и эволюции: Шестые Любищевские чтения, 11-й Всероссийский популяционный семинар и Всероссийский семинар «Гомеостатические механизмы биологических систем» с общей темой «Проблемы популяционной экологии» (6-10 апреля 1915 г., Тольятти, Россия) / Под ред. Г.С. Розенберга. Тольятти: Кассандра, 2015. С. 84-88.

ЭВОЛЮЦИОННАЯ СИНЭКОЛОГИЯ И ПРОБЛЕМА БЫСТРОГО СИМПАТРИЧЕСКОГО ФОРМООБРАЗОВАНИЯ

© 2015 А.Г. Васильев, И.А. Васильева, В.Н. Большаков Институт экологии растений и животных УрО РАН, Екатеринбург

EVOLUTIONARY SYNECOLOGY AND THE PROBLEM OF RAPID SYMPATRIC SPECIATION

Aleksey G. Vasil'ev, Irina A. Vasil'eva, Vladimir N. Bolshakov Institute of Plant and Animal Ecology of the UB RAS, Yekaterinburg e-mail: vag@ipae.uran.ru

В последние годы все шире обсуждаются проблемы диффузной коэволюции биотических сообществ [Thompson, 2006], быстрого симпатрического формообразования [Albertson, Kocher, 2006; Brakefield, 2006; Grant, Grant, 2009; de Graaf et al., 2010] и последствий инвазивных процессов [Sakai et al., 2001; Bertolino, 2013], решение которых позволит оценить вероятность наступления глобального и/или региональных биоценотических кризисов в XXI в., вызванных сочетанием негативных природно-климатических трендов и усиления техногенного воздействия на региональные биоты Земли. В.В. Жерихин [2003], одним из первых обнаруживший глобальный биоценотический кризис на границе среднемелового времени, полагал, что отдаленные признаки наступления глобального биоценотического кризиса отчетливо видны и в наше время. В истории Земли позднее были обнаружены аналогичные примеры проявления глобальных и региональных биоценотических кризисов, сопряженных с быстрой перестройкой и катастрофической сменой биоты: массовым вымиранием одних таксонов и быстрым видообразованием и появлением других. Поскольку опасность наступления глобального биоценотического кризиса высока, многие исследователи прогнозируют, что к середине XXI в. эволюционная экология займет лидирующее положение среди других биологических исследований [Sutherland et al., 2013], которое с начала века занимает молекулярная биология.

Мы, в свою очередь, полагаем, что в самом недалеком будущем среди прочих направлений эволюционной экологии, ведущее место будет принадлежать эволюционной синэкологии (ЭС), контуры которой сегодня еще только намечаются. Именно это направление исследований будет нацелено на изучение и моделирование сложнейших аспектов коэволюции сообществ, выяснение механизмов симпатрического видообразования и прогнозирование быстрых перестроек популяций и сообществ. Основной чертой и преимуществом ЭС является двухуровневый популяционноценотический подход [Чернов, 2008; Букварева, Алещенко, 2013] к проявлениям сопряженной изменчивости и морфоразнообразия в локальных таксоценах [Васильев и др., 2010]. Поскольку сообщества как таковые в полном объеме изучать сложно, в качестве природных моделей могут быть использованы их фрагменты – таксоцены [Чернов, 2008; Васильев и др., 2010]. Мы определяем *таксоцен* как исторически возникший локальный комплекс таксономически близких видов, выполняющих в сообществе сходные трофические и иные функции. Таксоцен – особый тип таксономически однородной экологической гильдии. Локальные таксоцены представле-

ны ценопопуляциями симпатрических видов, длительное время населяющими общую территорию/акваторию, а не списком видов. Примерами таксоценов являются сообщества землероек рода *Sorex*, американских дубов, флоки видов цихлидовых рыб Великих Африканских озер и др.

В основе быстрых перестроек сообществ лежат потенциальные возможности видовых компонентов к быстрым адаптивным или инадаптивным морфогенетическим изменениям. В свою очередь, в последние годы доказаны случаи трансгенерационного наследования эпигенетических профилей метилирования и связанных с ним изменений морфогенеза потомков [Jablonka, Lamb, 2010; Bonduriansky, 2012]. Такие приобретенные «наследуемые» трансформации морфогенеза за счет эпигенетических изменений теоретически могут в дальнейшем фиксироваться в геноме и приводить к быстрым перестройкам эволюционного характера [Васильев, Васильева, 2005].

Быстрые морфогенетические изменения хорошо известны. Благодаря искусственному бессознательному и сознательному отбору в историческое время человечеством созданы сотни пород собак. Недавними исследованиями с помощью геометрической морфометрии было показано [Drace, Klingenberg, 2010], что морфологическое разнообразие трехмерной формы осевого черепа пород собак (приведенного к одинаковому размеру) занимает в общем морфопространстве, сформированном представителями всех основных таксонов хищных млекопитающих, наибольшее по объему подпространство, которое превышает объем подпространства, занятого остальными представителями отряда Carnivora. Иными словами, рукотворный аналог "морфологической эволюции" в пределах одного вида оказался сопоставим с естественными масштабами эволюции целого отряда, что указывает на огромный потенциал быстрых перестроек морфогенеза.

Массовое внедрение агрессивных инвазивных видов в ценозы, наблюдающееся в последние годы в связи с возрастанием числа и разнообразия транспортных связей в мире и вызывающее вымирание одних и сокращение численности других видов в составе исторически сложившихся естественных природных сообществ, неизбежно приводит к неконтролируемой акклиматизации. Подчеркнем, что процесс акклиматизации представляет собой формирование адаптации видов-интродуцентов к новой ценотической обстановке, связанное с их морфогенетическими изменениями с одной стороны, и с процессами адаптивных перестроек видовых компонентов аборигенных биотических сообществ, обусловленными инвазией чужеродных видов, с другой. Другими словами, это популяционно-ценотические процессы, на которые нацелена эволюционная синэкология.

Адекватной моделью для изучения становления адаптации вида к новой для него абиотической и биотической среде обитания может служить успешная акклиматизация ондатры (*Ondatra zibethicus*) в Евразии. На основе того же метода геометрической морфометрии нами было установлено [Васильев и др., 2014], что всего за полувековой период акклиматизации ондатры на юге и севере Урала и Западной Сибири (1933–1989 гг.) у нее произошли направленные морфогенетические перестройки осевого черепа и нижней челюсти. На первом этапе акклиматизации возникла морфологическая дифференциация географически удаленных северной (п-ов Ямал) и южной (Курганская обл.) популяций. Затем в обеих популяциях произошли параллельные морфогенетические изменения. Поскольку эти изменения оказались почти строго однонаправлены, они указывают на сходное направление адаптивных процессов перестройки морфогенеза ондатры и на севере, и на юге. При этом исходно возникший размах морфологических различий между северной и южной популяциями сохранился, хотя форма осевого черепа и нижней челюсти существенно изменились.

Проявившиеся через полувековой период параллельные перестройки морфогенеза в обеих популяциях можно связать с постепенным встраиванием локальных группировок ондатры в ее новое ценотическое окружение. Таким образом, после фазы быстрого преобразования, позволившей ценопопуляциям вида закрепиться в локальных сообществах на юге и севере региона, наступил направленный процесс длительной популяционно-ценотической перестройки морфогенеза. Выявленные отдаленные морфологические последствия акклиматизации могут служить примером быстрой направленной микроэволюционной перестройки морфогенеза популяций акклиматизируемого вида в новых для него ценотических условиях. Они также свидетельствуют о том, что локальные северные и южные биотические сообщества оказали на морфогенез ондатры как нового инвазивного вида сходное по направлению ценотическое давление, вызвавшее у интродуцента быстрые параллельные адаптивные морфогенетические перестройки. Таким образом, можно полагать, что феномен давления биотического сообщества на морфогенез ценопопуляций симпатрических видов, приводящий к его быстрой направленной перестройке, является не мифом, а реальностью.

В этой связи для эволюционной синэкологии особый интерес представляет проблема быстрого симпатрического формообразования. Подобные случаи, доказывающие сам феномен, известны для так называемых флоков (пучков видов) рыб, в частности, усачей (Labeobarbus) оз. Тана в Эфиопии [Mina et al., 1996; de Graaf et al., 2010]. Флок видов африканских усачей Labeobarbus очень молод (не старше 15 тыс. лет), имеет монофилетическое происхождение, а его диверсификация обусловлена неоднократными процессами трофической специализации форм в разных биотопах, причем выбор новых биотопов сопровождался изменениями морфологии, связанными с новыми трофическими требованиями. Фенотипические черты рыб разных полувидов (semispecies), или как мы готовы их определить, «эковидов» (ecospecies), входящих в состав данного флока, устойчиво сохраняются и из поколения в поколение передаются потомкам. Таксоцен, представленный флоком усачей оз. Тана, тем не менее, функционирует как типичное сообщество рыб, где есть хишные, планктоноядные, моллюскоядные, растительноядные и другие специализированные симпатрически возникшие «эковиды». Исследования последних лет показали, что при этом молекулярно-генетическая диверсификация 15 морфологически и экологически дифференцированных представителей флока выражена слабо и с формальных генетических позиций они должны быть отнесены к одному виду [de Graaf et al., 2010]. М.В. Миной и Ф.Н. Шкилем (устное сообщение) было экспериментально установлено, что в общих аквариумах меченые потомки трех разных «эковидов» усачей оз. Тана в течение нескольких лет устойчиво сохраняли исходные морфотипы. Мы предполагаем, что ведущим механизмом устойчивого наследования в данном случае может являться мягкое наследование (soft heredity) за счет трансгенерационной передачи измененных эпигенетических профилей [Jablonka, Lamb, 2010; Bonduriansky, 2012]. Поэтому он вполне вероятен как некий эпигенетический механизм быстрых микроэволюционных и эволюционных перестроек морфогенеза популяций и сообществ [Васильев, Васильева, 2005].

Другой пример быстрого симпатрического формообразования — наличие параллелизма морфологических изменений эндемичных флоков цихлидовых рыб в озерах Танганьика и Малави и возникновение в этих изолированных озерах морфотипов-двойников — продемонстрирован Альбертсоном и Кочер [Albertson, Kocher, 2006]. С помощью методов геометрической морфометрии мы сопоставили форму тела в двойниковых парах морфотипов из этих озер, используя приведенные авторами

изображения 12 видов рыб (6 из них представители оз. Танганьика, 6 – оз. Малави), которые считаются парами сходных, или двойниковых морфотипов. Оцифровку изображений провели по 37 меткам-ландмаркам, характеризующим изменчивость формы тела и головы рыб. Результаты сравнения видов представлены на рисунке. Пары ординат сходных по морфологии видов-двойников из флоков разных озер, маркированных смежными нечетным и четным номерами, расположены в морфопространстве наиболее близко друг от друга (за исключением 1 и 2). При этом морфологическое разнообразие представителей оз. Танганьика, обозначенное штриховым полигоном, существенно больше, чем у видов из озера Малави (серый теневой полигон). Ведущей причиной параллельной морфологической диверсификации цихлидовых разных озер в этом примере мы считаем возникающие в данных таксоценах рыб сходные трофические, территориальные и иные взаимодействия, закономерно приводящие к появлению определенных морфотипов рыб, т. е. направленной симпатрической морфологической эволюции под давлением самоорганизующегося сообщества.

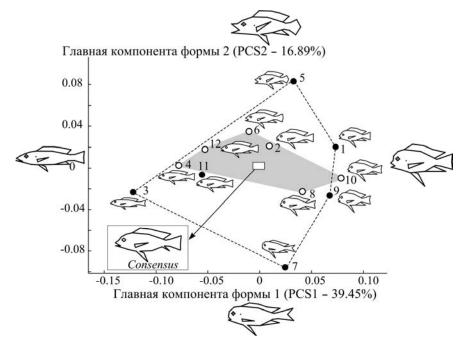


Рис. Геометрическая морфометрия формы тела видов цихлидовых рыб одной трибы, являющихся морфотипами-двойниками, из флоков Великих Африканских озер – Танганьика (черные кружки, штриховой полигон) и Малави (белые кружки, теневой полигон).

Морфопространство представителей флоков разных озер ограничено штриховым и теневым полигонами. Ордината каждого вида на графике сопровождается каркасной конфигурацией, построенной на основе 37 ландмарок. Краевые увеличенные конфигурации рыб соответствуют максимальным и минимальным значениям главных компонент формы (PCS1, PCS2). Консенсусная (усредненная) конфигурация изображена в нижней левой части графика.

Невероятно высокая скорость изменений морфогенеза при формировании упомянутого выше флока видов африканских усачей оз. Тана, а также ряда других аналогичных озерных флоков рыб, может быть обусловлена результатом изменения эпигенетических профилей, корректирующих морфогенез, и их дальнейшим трансгенерационным наследованием. Быстрые эпигенетические изменения, которые в

той или иной мере корректируют процесс морфогенеза, теоретически могут подхватываться направленным отбором и впоследствии фиксироваться стабилизирующим отбором (Васильева, Васильева, 2005). Поэтому можно полагать, что симпатрическое формообразование не только имеет место, но и одновременно является своеобразным аварийным способом ускоренной комплектации сообщества необходимыми функциональными видовыми компонентами. Таким образом, механизм быстрого симпатрического формообразования за счет эпигенетических перестроек и их дальнейшей фиксации вполне реалистичен, обусловлен двухуровневыми популяционноценотическими взаимодействиями и является основой дальнейшей направленной и диффузной коэволюции формирующихся в новой среде биотических сообществ.

Работа выполнена при поддержке Программы УрО РАН № 12 "Живая природа " (№ 15-12-4-25) и гранта Президента РФ (НШ-2840.2014.4).

ЛИТЕРАТУРА

- **Букварева Е. Н., Алещенко Г.М.** Принцип оптимального разнообразия биосистем. М.: Т-во научн. изд. КМК, 2013. 522 с.
- **Васильев А.Г., Большаков В.Н., Синева Н.В.** Отдаленные морфогенетические последствия акклиматизации ондатры в Западной Сибири // Докл. Академии наук (ДАН). 2014. Т. 455, № 4. С. 478-480.
- **Васильев А.Г., Васильева И.А.** Эпигенетические перестройки популяций как вероятный механизм наступления биоценотического кризиса // Вестн. Нижегород. гос. ун-та им. Н.И. Лобачевского. Сер. Биол. 2005. № 1 (9). С. 27-38.
- **Васильев А.Г., Васильева И.А., Городилова Ю.В., Чибиряк М.В.** Соотношение морфологического и таксономического разнообразия сообществ грызунов в зоне влияния Восточно-Уральского радиоактивного следа на Южном Урале // Экология. 2010. № 2. С. 119-125.
- **Жерихин В.В.** Избранные труды по палеоэкологии и филоценогенетике. М.: Т-во научн. изд. КМК, 2003. 542 с.
- **Чернов Ю.И.** Экология и биогеография. Избранные работы. М.: Т-во научн. изд. КМК, 2008. 580 с.
- Albertson R.C., Kocher T.D. Genetic and developmental basis of cichlid trophic diversity // Heredity. 2006. V. 97. P. 211-221.
- **Bertolino S.** Callosciurus squirrels: worldwide introductions, ecological impacts and recommendations to prevent the establishment of new invasive populations // Mammal Review. 2013. V. 43. P. 22-33.
- *Bonduriansky R.* Rethinking heredity, again // Trends in Ecology and Evolution. 2012. V. 27, No. 6. P. 330-336.
- *Brakefield P.M.* Evo-devo and constraints on selection // Trends in Ecology and Evolution. 2006. V. 21, No. 7. P. 362-368.
- de Graaf M., Megens H.-J., Samallo J. et al. Preliminary insight into the age and origin of the Labeobarbus fish species flock from Lake Tana (Ethiopia) using the mtDNA cytochrome b gene // Molecular Phylogenetics and Evolution. 2010. V. 54. P. 336-343.
- *Drake A.G., Klingenberg C.P.* Large-scale diversification of skull shape in domestic dogs: disparity and modularity // Amer. Naturalist. 2010. V. 175, No. 3. P. 289-301.
- *Grant P.R.*, *Grant R.* The secondary contact phase of allopatric speciation in Darwin's finches // Proc. National Acad. Sci. USA. 2009. V. 106. P. 20141-20148.
- *Jablonka E., Lamb M.J.* Transgenerational epigenetic inheritance / Evolution the Extanded Synthesis / Ed. by Piglucci M., Müller G.B. 2010. P. 137-174.
- *Mina M.V., Mironovsky A.N., Dgebuadze Yu.Yu.* Lake Tana large barbs: phenetics, growth and diversification // J. Fish Biol. 1996. V. 48. P. 383-404.

- *Sakai A.K., Allendorf F.W., Holt J.S. et al.* The population biology of invasive species // Annual Rev. Ecol. Syst. 2001. V. 32. P. 305-332.
- Sutherland W.J., Freckleton R.P., Goodfray H.Ch.J. et al. Identification of 100 fundamental ecological questions // J. Ecology. 2013. V. 101. P. 58-67.
- **Thompson J.N.** Mutualistic webs of species // Science. 2006. V. 312. P. 372-373.