ПРЕПРИНТ 38 Б

СОВРЕМЕННЫЕ ПОДХОДЫ ПРИ ИЗУЧЕНИИ ДЕНДРОХРОНОЛОГИЧЕСКОЙ ИНФОРМАЦИИ И АНАЛИЗ ВРЕМЕННЫХ РЯДОВ

Н.С. Абросов, В.С. Мазепа

Красноярск 1984
АКАДЕМИЯ НАУК СССР
СИБИРСКОЕ ОТДЕЛЕНИЕ
Институт физики им. Л.В.Киренского

Препринт ЭИБ

СОВРЕМЕННЫЕ ПОДХОДЫ ПРИ ИЗУЧЕНИИ ДЕНДРОХРОНОЛОГИЧЕСКОЙ
ИНФОРМАЦИИ И АНАЛИЗ ВРЕМЕННЫХ РЯДОВ

Н.С.Абросов, В.С.Мазепа

Красноярск 1984
Абрасов Н.С., Мазепа В.С. Современные подходы при изучении дендрохронологической информации и анализ временных рядов.

Препринт. Красноярск: СО АН СССР, 1984

В препринте подробно рассмотрены биоэкологические основы дендрохронологии, которые отражены в следующих основных принципах: актуализма, лимитирующих факторов, экологической амплитуды, отбора местообитаний, чувствительности, перекрестного датирования, повторности и индексирования. Рассмотрена специфика дендрохронологических рядов. Описывается применение статистического анализа временных рядов для решения задач дендрохронологии. Представлен обзор традиционных методов при оценивании спектральной плотности. Для обзор нетрадиционных параметрических методов оценивания спектральной плотности, а также обзор линейных нерекурсивных ортогональных импульсных фильтров с конечной областью отклика.

© Институт физики им. Л.В.Киренского СО АН СССР
Введение

Изучение погодичной изменчивости качественных и количественных характеристик слоев прироста древесины и выявление факторов внешней среды, определяющих эту изменчивость, является основной задачей дендрохронологии. По-видимому, впервые термин "дендрохронология" был предложен С. Эрландсоном (Erlandsson, 1936). В его работе этот термин определяется буквально как "изука, охватывающая круг вопросов, исследовавшихся А. Е. Дугласом и его последователями".

Годичная последовательность благоприятных и неблагоприятных условий (влажные и сухие, теплые и холодные) как правило, создает последовательность широких и узких колец у большого числа деревьев растущих в одном районе. Под воздействием условий внешней среды у деревьев данного района создается преимущественно синхронная последовательность широких и узких колец. Такая последовательность толщин годичного прироста несет информацию о биотических и абиотических условиях произрастания: возрастном состоянии.
дерева и влиянии на него других особей в фитоценозе; наледении грибов и вредителей; почвенных условиях произрастания; запасов минеральных и органических веществ; климатических условиях вегетационного периода и периода покоя. Поэтому ширина годичного кольца является оценкой целого ряда факторов, влияющих на рост дерева. Влияние этих факторов ощущается в совокупности и с различной интенсивностью в разные периоды года.

Одной из основных задач дендрохронологии является реконструкция некоторых важных элементов климата и их комбинаций, которые оказывают влияние на интенсивность роста дерева. На основе многолетних данных о приросте деревьев возможен прогноз как динамики прироста, так и факторов его определяющих. Одной из возможностей такого прогноза является установление цикличности в динамике годичного прироста. Цикличность в природных явлениях, особенно в метеорологических и гидрологических, изучается уже свыше 100 лет; однако теория этого вопроса разработана еще слабо. Механизм образования циклов различной длительности не выяснен. Поэтому в настоящее время происходит интенсивный процесс накопления материала на разных природных объектах.

Интерес к изучению циклического характера динамики прироста деревьев возникает не только в связи с насущной потребностью прогнозирования. Циклическая динамика продуктивности лесов имеет большое экологическое значение, так как обеспечивает длительное устойчивое и наиболее продуктивное функционирование фитоценозов в широких пределах изменений природной среды (Комин, 1981).

Обработка дендрохронологических рядов с применением современных математических методов невозможна без привлечения вычислительной техники, богатого программного обеспечения и соответствующих методов вычислительной математики. Причем использование ЭВМ должно преследовать не только цель ускорения обработки, но и
принципиальную возможность получения новых результатов, естественно за счет быстродействия вычислительных машин. Это обстоятельство обязывает исследователя давать отчет в корректности используемого метода, оценивать его эффективность. Необходимо более широкое внедрение и разработка новых математических моделей в практику дендрохронологических исследований. Это будет способствовать процессу обобщения уже накопленных данных и служить стимулом для постановки новых задач.

В настоящее время в дендрохронологических исследованиях большинство современных математических методов применяется либо эпизодически, либо используются не в полной мере. Многие методы оценивания используются без оправдания математической модели, лежащей в их основе. К таким методам, относятся спектральный анализ, методы фильтрации, теория статистического оценивания и выводов.

Получение дендрохронологической информации

Затем выбирают вид древесного растения и типы условий местообитания. Наиболее отзвуки на изменение внешних условий голосеменные, поэтому они в большинстве случаев используются при проведении дендрохронологических исследований. Опыт показал, что из покрытосеменных породы дуб, ясень, белая акация тоже вполне при-

От правильности выбора участков во многом зависит качество получаемых хронологий. Основное правило здесь таково: необходимо стремиться выбрать такие участки, где наиболее полно проявлялось бы действие основных лимитирующих факторов, а действие других факторов проявлялось бы в наименьшей степени.

На этом, первом этапе сбора информации особенно важно соблюдение основных принципов дендрохронологии. Они заимствованы из факторной экологии и подтверждают опыт дендрохронологических исследований. По Г. Фритсу (1976) этими принципами являются: принцип актуализма (uniformitarian), лимитирующих факторов, экологической амплитуды, отбора местообитаний, чувствительности, перекрестного датирования, повторности и стандартизации или индексирования.

Применительно к дендрохронологии, принцип актуализма подразумевает, что физические, химические и биологические процессы, которые связывают динамику роста дерева с современной окружающей средой, должны быть действовать и в прошлом. Другими словами, типы погодных условий и климатических ситуаций наблюдаемых в современности должны быть иметь место и в прошлом, а определенные типы лимитирующих условий в прошлом воздействовали на соответствующие процессы роста таким же путем, как и в настоящем. Лишь частота, интенсивность и локализация лимитирующих условий могли измениться. Кроме того, важно, чтобы весь диапазон изменчивости климата в прошлом включался в современную характеристику окружающей среды. По-видимому, нет оснований отвергать этот принцип применительно к дендрохронологии. Трудно представить, что в течение нескольких тысяч лет сущность процессов взаимодействия раститель-
ности и окружающей среды изменилась.

Принцип лимитирующих факторов может быть сформулирован просто: биологический процесс, такой как рост, не может протекать быстрее, чем это дозволено наиболее лимитирующим фактором. Одни и те же факторы могут лимитировать рост во все годы, но степень и продолжительность их лимитирующего воздействия меняется от года к году. В случае, если фактор переходит в разряд оптимальных, скорость роста будет возрастать до тех пор, пока другой фактор не станет лимитирующим (Одум, 1975). Многие авторы расширили это положение, включив в него, помимо питательных веществ и ряд других факторов, например, температуру и время (Taylor, 1934).

Этот принцип является особенно важным в дендрохронологии, так как годичные кольца могут быть сдатированы в том случае, если один или несколько факторов внешней среды являются критическими, действуют долго и на достаточно большой территории. В этом случае толщина годичных колец и некоторые другие характеристики изменяются сходным образом у многих деревьев. Если же рост деревьев не ограничен климатическим фактором либо условиями окружающей среды, то и не существует информации о климата в толщинах колец. Они не могут быть сдатированы. Согласно этому принципу, для дендрохронологического анализа следует брать образцы с таких деревьев, величина годичного прироста которых прямо или косвенно лимитируется каким-либо фактором.

Каждый вид в зависимости от наследственных факторов, которые определяют его фенотип, растет и продуктивен в определенном диапазоне типов местообитаний. Диапазон типов относится к экологической амплитуде. Виды, различающиеся по экологической амплитуде, могут лимитироваться одними и теми же климатическими факторами, если они растут в сравнимых местообитаниях внутри их собственной экологической амплитуды. Например, виды, произрастающие на боль-
той высоте над уровнем моря и северные виды, или виды, произрастающие на малой высоте и южные виды. Последние могут сходно отвечать на засушливые годы, хотя реагируют на различное количество осадков.

Принцип отбора местообитаний требует, чтобы образцы древесины брали с таких местообитаний, где проявляется действие лимитирующих факторов. Например, если на основе анализа изменчивости прироста требуется восстановить динамику выпадавших осадков, то в этом случае необходимо брать образцы с наиболее сухих местообитаний, режим увлажнения которых определяется в основном атмосферными осадками.

Найболее важным в дендрохронологии является принцип перекрестной датировки. Его применение обеспечивает своеобразную экспериментальную проверку при определении года формирования каждого годичного кольца. В дендрохронологии этот принцип окончательно был введен А.Е.Дугласом (1919), хотя он не был первым, кто открыл этот принцип (Studhalter, 1955). В основе этого принципа лежит следующее. Древесные растения, произрастающие в пределах какого-либо района, величиной прироста сходно реагируют на изменение внешних условий. В благоприятные по климатическим условиям формируются широкие кольца, в неблагоприятные — узкие. В связи с этим у большей части деревьев наблюдается синхронное изменение ширины годичных колец как во времени, так и в пространстве (в пределах однородного по климатическим условиям района). Особенно показательны узкие кольца, когда прирост в наибольшей степени лимитируется каким-либо фактором (например, недостатком влаги при засухе). Широкие кольца обычно менее показательны, так как в благоприятные годы они формируются не у всех деревьев в связи с лимитирующим воздействием каких-либо местных и второстепенных факторов (Колчин, 1963; McGinnies, 1963).
Опыт показывает, что чередование узких и широких колец непосредственно во времени. Поэтому совместить графики изменения ширины колец у сравниваемых деревьев можно лишь в пределах строго определенного участка дендрохронологического ряда. Перекрестное датирование — это сравнение сходных рисунков колец у разных деревьев и выбор точного места, где соответствие между ними максимально. Задачей датировки является точное определение года формирования всех годичных колец. Иногда в течение экстремального года дерево может не формировать кольцо в определенном месте ствола. В таких случаях говорят об отсутствии кольца в определенном месте ствола или радиуса — выпавшее кольцо. Иногда под влиянием внешних условий происходят изменения в структуре клеток ствола таким образом, что появляется как бы второе годичное кольцо. Такое образование называют ложным кольцом. Если в серии колец есть выпавшие и ложные кольца, то при перекрестной датировке с соответствующего местоположения такого кольца нарушается синхронность в изменении ширины годичных колец между сравниваемыми образцами.

Считается, что для надежной датировки необходимо, чтобы сравниваемые ряды перекрывались не менее чем на 50 лет (Douglas, 1936; Crock, 1937; Schulman, 1956). Величина минимального промежутка перекрытия в основном зависит от чувствительности и синхронности сравниваемых образцов. Перекрестное датирование в последнее время детально разработали (Stokes, Smiley, 1968).

Большое внимание, особенно в последнее время уделяется принципу повторности. Чтобы определить выпавшее или ложное кольцо, необходимо изучить и сдатировать несколько образцов. Повторность в выборке позволяет статистически сравнивать вариацию толщин колец внутри дерева, между деревьями и группами деревьев. Величина этой изменчивости дает оценку того, насколько факторы места и климата контролируют рост дерева. Если климат сильно лимитирует...
рост, то все выбранные образцы показывают приблизительно одинаковую вариацию в толщинах колец, а датировка может быть легко произведена. В таких случаях дендрохронологический ряд может быть построен по относительно малому числу образцов. Если климат не сильно лимитирует рост, то большая доля вариации может быть вызвана за счет других факторов, например, фитоценотических. В таких случаях необходимо собрать большое число образцов, чтобы надежно оценить вариацию климатических факторов. Кроме того, использование при анализе большого количества деревьев позволяет определить время действия частных лимитирующих факторов (Мазепа, 1982).

Процедура стандартизации или индексирования (в советской литературе чаще применяется второй термин) является настолько важной, что ее выделяют в особый принцип. При изучении изменчивости прироста, связанной с динамикой климата, очень важно оценить систематическое изменение толщины колец, зависящих от возраста дерева и исключить его. Кроме возраста на величину прироста оказывают влияние факторы эндогенного и фитоценотического характера. Поэтому каждый исследователь стремится максимально исключить влияние этих факторов. Стандартизация по словам А. В. Дугласа придает кривым толщины колец одно и то же среднее, так что значение толщины колец одного дерева с большим средним приростом не будет доминировать над толщинами колец другого дерева с малым средним приростом в течение жизни. Методически индексы прироста вычисляют многими способами. Однако, условно можно выделить три основных.

Первый способ заключается в логарифмировании абсолютных величин прироста (Huber, 1943; Колчин, 1963). Этот способ прост в реализации. Его с успехом применяют для целей датирования годичных колец. Однако, для дендрохиматического исследования применение его не оправдано (Битвинскис, 1974). Это связано с тем, что сущность взаимодействия биотических и абиятических процессов, отраженных...
в реакции дерева, не подчиняется логарифмическому закону.

Второй способ, по-видимому, самый распространенный, состоит в вычислении процентных отклонений фактического прироста за каждый год от средней динамической нормы прироста. При этом индекс прироста каждого года определяется как отношение абсолютной величины прироста к норме прироста соответствующих календарных дат. Все многообразие методов индексирования при этом способе определяется различием в вычислениях средней нормы прироста. Она получает либо графически, либо математическими методами.

Среди математических методов оценки средней нормы прироста используются в основном два. Метод оглаживания и осреднения описан в работах (Ericsson, I936; Рудаков, I952). Метод оценки параметров так называемых возрастных кривых рассматривается в работах (Schulman, I956; Fritts, etc., I969; Битвиносов, I974).

Метод оглаживания при помощи скользящего среднего с равными весами обладает рядом существенных недостатков. Во-первых, скользящее среднее представляет частный случай линейного фильтра. По частотной характеристике такой фильтр является низкочастотным. Поэтому в значениях средней нормы прироста будут входить и долговременные изменения, быть может не связанные с возрастом дерева. А следовательно, в индексах прироста такие изменения будут отсутствовать. Примеры проявления таких недостатков при индексировании приведены в работах (Шиатур, I970; Косим, I970). Во-вторых, при расчете возрастной кривой методом скользящего среднего ее начало и конец "обрывается" на отрезок времени равный периоду осреднения. Чтобы избежать этого, исследователи либо игнорируют "концевую" информацию, либо достраивают возрастную кривую графическим методом.

Метод исключения различий в темпах роста, предложенный С. Эрландсоном (I936) применяется гораздо реже (Косим, I970). Суть его
состоит в том, что возрастная кривая вычисляется усреднением тол-
щин каждого годичного слоя у нескольких деревьев одного класса воз-
раста, но разного календарного возраста. Оценивается биологиче-
ский возраст каждого класса. Таким образом строятся различные
средние нормы прироста для разных пород, местообитаний и даже пе-
риодов времени. Г. Е. Комин (1970) описал сходный метод с той лишь
резницей, что усреднение производится не возрастным классам воз-
раста, а по биологическому возрасту отложений годичных колец.

Метод оценки параметров возрастных кривых в настоящее время ис-
использует функциональные зависимости экспоненциального роста и
полиномы низких степеней. В работах Т. Т. Бытинскаяса используется
гиперболические зависимости, предложенные шведскими учеными М. Не-
олундом и Б. Энлундом. Необходимо отметить, что в дендрохронологи-
иет опыт использования возрастных кривых, параметры которых име-
ют четкую биологическую интерпретацию. Хотя к настоящему времени
накопилось большое количество работ по моделированию роста дере-
ве и древостоев (Grosebaugh, 1965; Yang, Kozak, Smith, 1978;
Веранов, Терсков, 1978; Рачко, 1978, 1979; Кофман, Кузьминчев, Клеверно, 1979;
Sandland, Mogilchrist, 1979; Bailey, 1980; Baskerville, Kleinschmidt, 1981; Еменин, 1982).

Третий способ индексирования заключается в вычислении процент-
ных отклонений фактического прироста каждого года в пределах меж-
ду минимально и максимально возможным приростом (Artevs, 1925;
Щетов, 1970, 1972). Кривые максимально и минимально возможного при-
роста строятся графическим методом.

Принцип стандартизации включает в себя не только процедуру ин-
дексирования отдельных модельных деревьев. Индекс прироста отдель-
ных сдатированных образцов усредняют по каждому календарному году,
чтобы получить усредненный дендрохронологический ряд для исследу-
- 12 -
емого района. В итоге каждый год такого ряда представлен многими модельными деревьями. Такая процедура становится возможной только после индексирования каждого модельного дерева - все они имеют одну и ту же среднюю (единицу, если индекс исчисляется в долях или 100 %) и вариацию.

Объединение отдельных рядов является важным этапом стандартизации, так как деревья, растущие медленно, часто дают больше информации об изменчивости элементов климата, чем быстро растущие деревья. Вопрос о количестве деревьев необходимых для получения усредненного ряда решается из конкретных условий места произрастания, породы древесных растений и поставленной задачи. Однако, существуют общие придержки. Так, например, дендрохронологические ряды, которые поступают в Международный дендрохронологический банк данных должны быть представлены не менее чем десятью деревьями, а прирост каждого модельного дерева замерен по двум радиусам.

Применение вышеперечисленных принципов при дендрохронологических исследованиях является необходимым условием успешных результатов. Анализу поверхностных работ, выполненных без соблюдения принципов дендрохронологии, посвящена специальная статья С.Г. Шиятов (1979).

Специфика дендрохронологических рядов

Расшифровать роль того или другого фактора в определении доли годичного прироста — задача очень сложная и до сих пор не решена окончательно (Шиятов, 1973). Тем не менее, результаты анализа дендрохронологических рядов находят свое отражение во многих областях науки, занимающихся реконструкцией климатов прошлого, изучением цикличности природных явлений, датировкой археологической древности и исторических событий, индикацией природных явлений и некоторых геофизических задач.

В литературе описаны дендрохронологические ряды для целых районов, которые показывают высокую связь с динамикой климатических

Известны удачные попытки реконструировать сток речного басо- сейна на прошие годы, за которые отсутствуют гидрологические дан- ные (Stockton, Fritts, 1973; Stockton, 1975).

Перечисленные работы показывают, что в определенных районах прирост деревьев хорошо согласуется с динамикой климата или других факторов внешней среды. При проведении дендроклиматических иссле- дований большое значение имеет получение длительных рядов индексов прироста. Особо надежными будут ряды, получаемые по чувствительным образцам деревьев. А.Е.Дуглас, Э.Шулман и другие исследо- ватели неоднократно отмечали, что наивысшей чувствительности до-
типа те древесные растения, которые произрастают в пессимальных условиях существования и имеют крайне незначительную величину прироста.

Хотя ширина годичного кольца не является точным мерилом отдаленных показателей годового климата, она дает полезную основу для понимания длительных рядов климатических изменений.

В работе Г. Фирта (1968) показано, что доля объяснимого изменения индексов прироста некоторых деревьев можжевельника, сосны и дубовой пихты в зависимости от климата колеблется в пределах 9–13%. Считается, что эта величина вполне подходит для объяснения биологических взаимоотношений и вряд ли будут получены более надежные корреляции. Это говорит о том, что при проведении дендро-климатических исследований необходимо тщательно отбирать образцы деревьев, а также учитывать специфику получаемых рядов.

Одной из особенностей дендрохронологических рядов является то, что эти ряды получают из рядов абсолютных величин годичного прироста, несущих информацию об индивидуальном росте дерева. Процедура индексирования направлена на уменьшение доли эндогенной изменчивости. Ряды индексов обнаруживают относительную независимость изменчивости прироста от возраста дерева. Однако, полностью исключить эндогенную компоненту в динамике прироста не представляется возможным.

Предлагаемые методы учитывают зависимость прироста от его значений в предшествующие годы в виде модели линейной регрессии. В.Е. Рудаков (1963) рассматривает модель, пытаюсь разделить эти компоненты:

\[I_t = a_t \cdot I_{t-1} + a_x \cdot X_{t-1} + b, \]

где \(I_t \) — значение индекса в год \(t \); \(a_t \) — частный коэффициент корреляции между индексами смежных лет; \(a_x \) — частный коэффициент корреляции между индексами и количеством осадков предшествующего года; \(b \) — свободный член; \(X_t \) — значение осадков в год \(t \).

П. Харр и Г. Сирен (1972) предлагают следующую модель:

\[I_t = R_t + a \cdot (I_{t-1} - 100) + D_t \cdot R_t, \]

где \(I_t \) — значение индекса прироста в год \(t \); \(R_t \) — вычисляемая количественная характеристика роста в вегетационный период; \(D_t \) — коэффициент, учитывающий поправку на урожай; \(a \) — коэффициент корреляции со сдвигом на один год между индексами прироста.

Еще одна особенность дендрохронологических рядов состоит в том, что для выбранного района исследований можно получить несколько независимых дендрохронологических рядов модельных деревьев, характеризующих один и тот же процесс формирования годичных приростов древесины. Эта особенность отражена в основных принципах дендрохронологии. Однако, при составлении обобщенных дендрохронологических рядов возникает неоднородность из-за использования различного числа модельных деревьев на разных временных интервалах этого ряда (Шиатов, 1980). В упомянутой работе предлагается метод для устранения этой неоднородности.

Дендрохронологический ряд можно считать однородным, если при обзоре и обработке исходных данных были соблюдены следующие основные условия: образцы древесины брались в пределах однородного климатического...
матического района, в определенном тише условий местопитания, с одного вида древесного растения, на одной высоте ствола, а расчет индексов прироста производился по одной методике. Кроме того, необходимо, чтобы обобщенный дендрохронологический ряд на всем протяжении был представлен достаточным числом повторностей (модельных деревьев).

Если первые из перечисленных условий более или менее учитываются, то этого нельзя сказать относительно последнего условия. Как правило, для получения обобщенных рядов используются разновозрастные деревья. Поэтому средние значения индексов прироста каждого года в общем ряду вычисляются путем использования неодинакового числа повторностей в пределах отдельных отрезков ряда. Это приводит к возникновению неоднородности в дендрохронологических рядах. Сам факт этой неоднородности отмечен в литературе сравнительно давно (Schulman, 1956). Однако, до сих пор она совершенно не изучена и не разработаны методы устранения ее влияния. Почти все полученные до настоящего времени дендрохронологические ряды, особенно длительные, содержат эту неоднородность. Очень показательны в этом отношении ряды, опубликованные в следующих работах (Довалиус, 1972, рис.1; Молчанов, 1976, рис.48-50).

Анализ значений коэффициента вариации дендрохронологического ряда в зависимости от количества представленных в нем модельных деревьев позволил С.Г.Шиятову (1980) получить следующие результаты. Во-первых, при составлении общепринятого дендрохронологического ряда необходимо использовать достаточно большое число модельных деревьев и чтобы любой период времени был представлен примерно одинаковым числом таких деревьев. Во-вторых, предложен метод исключения неоднородности при условии, что отдельные отрезки ряда составлены из разного количества деревьев.
Анализ дендрохронологической информации

Возможности использования дендрохронологического анализа для решения ряда научных проблем в различных областях знаний велики и непрерывно расширяются благодаря высокой точности метода и долголетию древесных растений. Наиболее часто этот анализ применяется при реконструкции климатов прошлого, изучении цикличности природных явлений и датировке археологической и полумогильной древесины. В последние время древесно-кольцевой анализ все чаще используется для индикации различных природных явлений и при решении некоторых геолого-геофизических задач.

Дендрохронологов и дендроклиматологов интересует прежде всего три основных исходных момента, первое - это датировка годичного кольца и его серий, второе - наличие определенных связей между величинами годичных приростов и факторами внешней среды, и третье - выявление внутренних закономерностей в динамике относительных приростов древесины.

Остановимся на обзоре лишь некоторых задач, решаемых на дендрохронологическом материале.

Построение обобщенных дендрохронологических рядов, которые более точно отражали бы изменение лимитирующих климатических факторов по экотопам или отдельным районам является залогом успешных результатов исследования. Для получения надежных рядов необходимо представлять характер влияния отдельных климатических элементов, биотических факторов, а также степень антропогенного влияния на интенсивность годичного прироста древесины.

Обычно дендрохронологический ряд, удовлетворяющий указанным выше требованиям, получают на основе изучения прироста многих модельных деревьев, произрастающих в определенном районе или экотопе (Fritts, 1976; Шиятов, 1979). Чтобы расширить ряд во времени, используют полускопируемую и археологическую древесину (Шиятов, 1972;

Другим важным вопросом, решением которого занимается дендрохронология, является выяснение внутренней структуры рядов прироста. Основное внимание в этом направлении уделяется изучению цикличностии в динамике годичных приростов.

Интерес к изучению цикличности в динамике годичного прироста деревьев возник в связи с возросшим интересом геофизиков в начале текущего столетия к солнечно-земным связям. Особенно интенсивно эта проблема разрабатывалась американскими дендрохронологами (Douglas, 1919, 1928, 1936; Schulman, 1956). Впервые обширные исследования по циклической динамике годичного прироста и ее связи с солнечной активностью проведены А. Е. Дугласом. Практически во всех группах проанализируемых им деревьев выделен II-летний цикл солнечной активности. Им выделены и охарактеризованы другие циклы в динамике прироста древесины. Однако, после этого интерес к изучению цикличности значительно связался. В. Гиок (1941) отмечает несколько причин этого явлени. Среди них: неудовлетворенность степенью успеха в решении задачи реконструкции динамики климатических факторов, например, осадков на основе выделяемых циклов; выделение циклов, которые вероятны в своем проявлении и упоминание слишком большого числа циклов; необходимость тщательного учета современных знаний о физиологии, анатомии и экологии в развитии древесных пестек; частое несоответствие динамики прироста динамике солнечных циклов и другие.

При решении задачи прогнозирования климатических элементов на основе цикличности в характере прироста деревьев А. Е. Дуглас (1936) отмечает три причины несовершенства. Во-первых, климатические циклы, если они вообще существуют подобно годичным или месячным, полагают неизменными. В то же время исследователи понимают, что клы-
матические циклы не являются постоянными и должны быть изучены о этой точки зрения. Во-вторых, при прогнозировании предполагают, что циклы имеют синусоидальную форму, которая обычно продуцируется движением планет. В-третьих, смесь циклов слишком велика, чтобы выделять их обычными методами анализа, которые не распознают прерывистого и затухающего характера циклов. Таким образом, изучение и выявление циклов в дендрохронологических рядах, как и вообще во всех природных явлениях, связано со значительными трудностями методического характера.

Особое место в таком рода исследованиях занимают методы оценки параметров циклов. Традиционными методами являются: визуальный анализ рядов, применение разностных интегральных криевых, гармонический анализ, целая серия статистических методов - результаты корреляционного, автокорреляционного и спектрального анализов. Самым, пожалуй, распространённым является метод оглаживания при помощи скользящих средних. Причем, оглаживание производится как с равными весами (Рудаков, 1952) и многократным применением скользящего среднего (Erlandsson, 1936; Комин, 1970), так и с неравными весами (Fritts, 1976).

В ранних дендрохронологических работах при выделении циклов применяли трех- и пятилетние скользящие, чтобы сгладить погодичные изменения.
нует изменчивость длительностью более трех лет. Однако, количество и значения весов могут быть различны в зависимости от частот, которые должны быть выделены и которые должны быть исключены при сглаживании. Применение процедур сглаживания с заранее заданной частотной характеристикой на дендрохронологическом материале нам не известно.

Некоторые исследователи предостерегают от употребления фильтров или скользящих средних, потому, что они могут индуцировать циклы в данных. Такие предостережения возникают из результатов работы Е.Е.Случкова (1927), который нашел, что результат n-кратного взятия разностей, а затем m-кратного суммирования исходного ряда, при $\frac{n}{m} = \text{const}, n \to \infty$, стремится к синусоидальной кривой. До известной степени предостережения в этих работах правильны. Однако, знание частотной характеристики фильтра исключает возможность появления "ложного цикла".

Необходимо отметить, что методы спектрального анализа не нашли широкого применения, главным образом, ввиду сложности статистических выводов, основанных лишь на оценках спектральной плотности. В статистической теории при проверке гипотезы о наличии скачка в спектральной функции предполагается известным вид этой функции или вид модели, порождающей временной ряд. На практике дендрохронологических исследований такое положение в настоящее время маловероятно. Тем не менее, материал по практическому спектральному анализу в дендрохронологических исследованиях непрерывно накапливается (La Marque, Pritts, 1972; Дроздов, Малкова, 1972; Черкашин, Кузьмицев, 1977; Ступнева, Битанаскас, 1978; Шиятов, 1981; Борщева, 1983 и др.).

Известны работы по применению кросс-спектрального анализа для задач районирования дендрохронологических рядов по проявлению в них определенной цикличности (La Marque, 1974; Pritts, 1976; Мазепа, 1980).
Из краткого обзора работ по проблеме цикличности мы пришли к
выводу, что дендрохронология несомненно принципиальную возмож-
ность расщепления рядов прироста на циклические компоненты. Одна-
ко, употребляемые термины и понятия плохо определены (Гренджер,
Хатавака,1972). Часто возникают недоразумения. Например, не всегда
ясно, различны ли циклы близкие по своим параметрам. И вообще,
количественные характеристики цикла (амплитуда, фаза и период) не-
достаточно отражают существенные черты циклической компоненты, так
как циклы часто претерпевают сбои. Существующие определения цикла
(например, Дрождов,Григорьев,1971; Рудинштейн,Полозова,1966) но-
сят описательный феноменологический характер. Эти определения не
позволяют идентифицировать и различать циклы. Приемлемое функцио-
нальное определение цикла отсутствует. А это является чрезвычайно
важным, так как часто не известны причины, вызывающие цикличность.
Методы же выделения циклов не направлены на то, чтобы избавиться
от этой трудности.

Прогнозирование климатически обусловленной динамики прироста
древесины является одной из возможностей выхода из сферу практиче-
ского применения. В связи с разработкой долгосрочных планов использу-
ования и охраны природных ресурсов необходимость разработки долго-
срочных (от 1 до 5 лет) и сверхдолгосрочных (свыше 5 лет) прогнозов
резко возрастает. Обеспечение планов народного хозяйства экологиче-
ских прогнозов становится одной из основных функций прикладной
экологии. Анализ на цикличность дендрохронологических рядов позво-
ляет производить прогноз климатически обусловленной динамики приро-
ста древесных растений. При этом каждый цикл заменяют периодической
функцией (например, синусоидой), а прогноз представляет собой значе-
ний таких функций на еще не наступивший момент времени. Известные
удовлетворительные прогнозы на основе такой модели (Douglas, 1928;
Комиль,1978; Берри,Либерман,Шиатов,1979,1983;Шиатов,1981;Борщева,
Анализ временных рядов

Предмет анализа временных рядов тесно связан с широким кругом вопросов, среди которых можно назвать статистическую теорию связи, теорию прогнозирования и регулирования и статистический анализ временных рядов (Хеннан, 1974). Статистический анализ временных рядов играет в какой-то мере вспомогательную роль по отношению к первым двум теориям, ибо в его задачу входит разработка рекомендаций, существенных для применения этих теорий. Однако, статистический анализ существует не зависито от них, поскольку он необходим в тех областях, где пока нет хорошо разработанных методов (например, в биологии).

В этом параграфе основное внимание будет уделяться работам, посвященным практическому спектральному анализу и линейной фильтрации временных рядов.

История развития идей и методов анализа всего многообразия случайных процессов привела к выделению класса стационарных процессов. Определение стационарного случайного процесса можно найти во многих работах (Андерсон, 1976; и др.). Отметим еще, что почти все приложения используют только ту часть общей теории стационарных процессов, которая имеет дело лишь с моментами этих процессов.
первых двух порядков и обычно называется корреляционной теорией или теорией стационарных процессов второго порядка. Поэтому в теории принято определять стационарность в более широком смысле.

Внешний характер реализации стационарного случайного процесса проявляется в виде колебаний наблюдаемой величины вблизи ее среднего значения, а вероятностная структура процесса не изменяется со временем. Стационарные временные ряды являются частным случаем стационарных процессов с непрерывным временем. Свойства этих процессов, имеющие смысл для временных рядов, без изменения переносятся на последние.

Временным рядом называют последовательность наблюдений, обычно упорядоченную во времени, хотя возможно упорядочение и по какому-либо другому параметру. Как правило, наблюдения во временных рядах статистически зависят. Мы ограничимся временными рядами, представляющими дискретную последовательность наблюдений, производимых через одинаковые промежутки времени.

Цель изучения временных рядов могут быть различны. Можно, например, стремиться предсказать будущее на основании знаний прошлого, выяснить механизм, порождающий ряд, или просто сжато описать характерные особенности ряда. На основании ограниченного количества информации временного ряда конечной длины можно делать выводы о вероятностном механизме, порождающим этот ряд, анализировать структуру, лежащую в его основе.

Пусть наблюдаемым временным рядом являются \(X_1, X_2, \ldots, X_N \), т.е. имеются \(N \) чисел, представляющих собой наблюдения некоторой переменной в \(N \) равноотстоящих моментов времени. Достаточно общей математической моделью служит модель вида:

\[
X_t = f(t) + U_t, \quad t = 1, 2, \ldots, N
\]
В этой модели наблюдаемый ряд рассматривается как сумма некоторой полностью детерминированной последовательности \(\{ f(t) \} \), которую можно назвать систематической составляющей и случайной последовательности \(\{ u_t \} \), подчиняющейся некоторому вероятностному закону. Эти компоненты ряда ненаблюдаемы: они являются теоретическими величинами. Можно рассматривать различные варианты математической модели, в которых влияние времени может сказываться либо только на последовательности \(\{ f(t) \} \), либо только на вероятностном процессе, определяющем случайную последовательность \(u_t \), либо, наконец, на обеих этих компонентах.

Первоначальный анализ временных рядов базировался на моделях, в которых влияние времени проявлялось только в систематической составляющей. Эту ситуацию можно было бы назвать классической, поскольку в известной степени она восходит к тем временам, когда К. Гаусс и другие развивали теорию и метод наименьших квадратов. В этом случае последовательность \(\{ f(t) \} \) называют "функцией регрессии". Методы статистических выводов для коэффициентов функции регрессии оказываются полезными во многих областях статистики.

В рамках сделанных ограничений, можно выделить два типа временных последовательностей \(\{ f(t) \} \), часто называемых трендом. Один тип представляет медленно меняющиеся функции времени, примером которых могут служить полиномы достаточно низкой степени. К другому типу принадлежат циклические последовательности, например, конечные отрезки ряда Фурье.

Одной из общих моделей, в которой влияние временного параметра проявляется в случайной составляющей, является стационарный случайный процесс.

Весомый вклад в изучение свойств стационарных случайных процессов был сделан при помощи спектральной теории, созданной в период 1934-1942 гг. в работах А.Н. Хинчина (1938), А.Н. Колмогорова.
Изучение свойств случайных стационарных процессов связано с трудностями формального характера. Однако, основные результаты работ о свойствах этих процессов можно представить довольно наглядно. Во-первых, отличительным признаком класса стационарных процессов является их простая частотная структура. Мнообразие нестационарных процессов настолько велико, что они не имеют своего "классового" признака. Во-вторых, всякий стационарный процесс может быть представлен в виде, называемом представлением Крамера для стационарного процесса:

$$X_t = \sum_{\omega} \exp(\cdot \omega) \cdot \mathcal{Z}(\omega)$$ \hspace{1cm} (I)

где $\mathcal{Z}(\omega)$ - комплексная случайная функция, называемая процессом с некоррелированными приращениями, так как она обладает свойствами:

$$E[(\mathcal{Z}(\omega_1) - \mathcal{Z}(\omega_2))(\mathcal{Z}(\omega_3) - \mathcal{Z}(\omega_4))] = 0, \quad \omega_1 > \omega_2 > \omega_3 > \omega_4$$

$$E[|\mathcal{Z}(\omega_1) - \mathcal{Z}(\omega_2)|^2] = F(\omega_1) - F(\omega_2), \quad \omega_1 > \omega_2$$

и, следовательно,

$$E\left[d\mathcal{Z}(\omega_1) \cdot d\overline{\mathcal{Z}(\omega_2)}\right] = \begin{cases}
0, & \omega_1 \neq \omega_2 \\
 dF(\omega), & \omega_1 = \omega_2 = \omega
\end{cases}$$

Здесь и далее используются общепринятые обозначения.

$E[X]$ - математическое ожидание случайной величины X.

\overline{X} - число сопряженное к X.

Далее, автокорреляционная последовательность μ_{τ} для стационарного процесса может быть всегда представлена в следующем виде. Та-
Кое представление называют теоремой Винера-Хинчина.

\[\Phi(t) = \sum_{\omega} E^{i\omega t} F(\omega), \]
(2)

где \(F(\omega) \) — некоторая функция, определенная на отрезке \([\omega_1, \omega_2] \).
Она монотонно возрастает (по крайней мере, не убывает) и ограничена, и где \(F(-\omega) = 0, F(\omega) = \Phi(\omega) \) — функция, называемая спектральной функцией. Так как \(F(\omega) \) монотонно возрастает, то имеет место классическое разложение (Колмогоров, Фомин, 1976, теорема Лебега, стр. 345).

\[F(\omega) = F_1(\omega) + F_2(\omega) + F_3(\omega) \]

где \(F_1(\omega), F_2(\omega), F_3(\omega) \) не убывают и представляют собой соответственно абсолютно непрерывную функцию, ступенчатую функцию и так называемую сингулярную функцию, непрерывную, но постоянную почти всюду. Часть, соответствующая \(F_3(\omega) \), по-видимому, не имеет особых значений для наблюдений.

Таким образом, можно показать, что любой стационарный процесс может быть разложен на сумму процессов, т.e. \(X_t = X_1(t) + X_2(t) \), где \(X_1(t) \) имеет абсолютно непрерывную спектральную функцию, причем формула (2) преобразуется к виду

\[\Phi(t) = E [X_1(t) - X_1(t-\tau)] = \int_{-\pi}^{\pi} e^{i\omega t} \Phi(\omega) d\omega \]
(3)

а процесс \(X_2(t) \) имеет вид

\[X_2(t) = \sum_{j=1}^{\infty} a_j e^{i\omega_j t}, \quad |\omega_j| \leq \pi \]
(4)

в предположении, что \(\sum_{j=1}^{\infty} E[|a_j|^2] < \infty \), дисперсия процесса будет конечной.

При этом разложении процесс \(X_1(t) \) и \(X_2(t) \) не коррелируют, причем \(X_2(t) \) соответствует линейному циклическому процессу, а про-
процесс $X(t)$ является представителем некоторого класса процессов, который содержит в себе процессы авторегрессии, скользящего среднего и линейных регрессионных процессов. Стационарные случайные процессы вида (4) называются процессами с дискретным спектром. Основным математическим результатом для спектрального представления стационарного процесса являлась теорема Гершпрунга, опубликованная в 1935 году (Каллера, 1935).

По-видимому, это те основные следствия спектральной теоремы стационарных случайных процессов, которыми пользуются на практике.

Полагая $b(t), C = 0$ получим, что дисперсия процесса представима:

$$
D[X(t)] = \int_{-\infty}^{\infty} f(\omega) d\omega,
$$

где $f(\omega)$ — функция спектральной плотности процесса.

Таким образом, если мы анализируем функцию спектральной плотности, то воящий "воплеск" этой функции на интервале ее определения должен интерпретироваться как увеличенный вклад соответствующих составляющих по частоте в общую дисперсию. При решении большинства практических задач вид функции спектральной плотности априори не известен. Пользуются статистическими оценками этой функции. Оценка может быть "хорошей" или "плохой" в смысле близости к оцениваемой функции процесса, статистических свойствах этой оценки, удобства вычислений и т. п. Но это уже предмет практического спектрального анализа.

Здесь мы представим обзор нескольких развитых в последние два десятилетия методов спектрального анализа временных рядов. Общей основой для понимания различных среди множества подходов спектрального анализа служит изучение модели, порождающей временной ряд.

Традиционными подходами при оценивании спектральной плотности
являются два метода: классический метод Р. Блэкмана и Дж. Тьюки (1958) и алгоритм быстрого преобразования Фурье (БПФ), примененного непосредственно к данным, признанный обычно Дж. Кулли и Дж. Тьюки (1965). Оба метода являются сейчас наиболее популярными при вычислении плотности спектра. Первый метод — это практическое внедрение представления Виенера-Хинчина автокорреляционной последовательности (3), используя обратное преобразование Фурье. Далее оценка сглаживается подходящим выбором весов. Для численных расчетов предлагается формула:

$$\hat{f}(\omega_j) = \frac{1}{2\pi} \left(\sum_{k=0}^{m} \lambda_k \hat{C}_k \cos(\omega_j k) \right), \quad (6)$$

$$\omega_j = \frac{2\pi j}{m}, \quad j = 0, 1, \ldots, m$$

где \hat{C}_k — оценка автокорреляционной последовательности;

λ_k — значения сглаживающих весов.

$$\hat{C}_k = \frac{1}{N-k} \left(\sum_{t=1}^{N-k} x_t x_{t+k} - \frac{1}{N-k} \sum_{t=1}^{N-k} x_{t+k} \sum_{t} x_t \right), \quad (7)$$

или

$$\hat{C}_k = \frac{1}{N} \sum_{t=1}^{N-k} (x_t - \bar{x})(x_{t+k} - \bar{x}), \quad (8)$$

где

$$\bar{x} = \frac{1}{N} \sum_{t=1}^{N} x_t$$

$$\lambda_k = \frac{1}{2} \left(1 + \cos \left(\frac{\pi \cdot k}{m} \right) \right), \quad (9)$$

или

$$\lambda_k = \begin{cases} 1 - \frac{6 \cdot k^2}{m^2} \left(1 - \frac{k}{m} \right), & 0 \leq k \leq \frac{m}{2}, \\ 2 \cdot \left(1 - \frac{k}{m} \right)^3, & \frac{m}{2} < k \leq m \end{cases}, \quad (10)$$

- 29 -
При применении формул (7) и (9) оценку спектральной плотности называют оценкой Тьюки-Хеминга, а при (8) и (10) — оценкой Парэена.
\(M \) — число гармоник на которое разбивается исследуемый частотный интервал определения спектральной плотности.

Второй метод основан на применении конечного преобразования Фурье непосредственно к реализациям случайного процесса с использованием выражения:

\[
\hat{f}(\omega) = \left| \frac{1}{N} \sum_{t=1}^{N} x_t e^{-i \frac{\omega t}{N}} \right|^2
\]

(II)

С момента появления в 1965 г. алгоритмов БПФ этот подход стал преобладающим. В общем спектральные оценки Блэйкмана-Тьюки (БТ) и периодограммы с использованием БПФ не идентичны. Однако, если используется смещенная оценка автокорреляционной последовательности (8) с числом гармоник равным числу наблюдений, эти оценки дают одинаковый численный результат. Для практических нужд они оказываются одинаковыми.

Кратко отметим преимущества и недостатки этих методов. Преимущества: вычислительная эффективность, если используется небольшое число гармоник в методе БТ или если используется БПФ. При этом в первом случае требуется примерно \(N \cdot m \) операций умножения и сложения, в то время как метод БПФ требует примерно \(4 \cdot N \cdot p \), где \(N = 2^p \); оценки прямо пропорциональны мощности синусоидальных компонент в процессе. В этом случае предполагается, что процесс состоит из множества гармонических связанных синусоид. Эти методы являются естественным продолжением метода периодограммы А.Шустера; такая модель является адекватной для некоторых приложений. Недостаток: явление "утечки" — подавление слабого сигнала в основной области откликов боковыми всплесками в области сильного сигнала; частотное разрешение ограничено длиной года.

Статистические свойства этих оценок (смещённость,состоятель-
ность, выборочные свойства и др.) прекрасно изложены в работе (Брэйлайнджер, 1980).

Обзору нетрадиционных методов оценивания спектральной плотности, в частности параметрических, в значительной степени способствовало прочтение работы (Kay, Marple, 1981). Разработка этих методов началась в 60-х годах. В. Парзен в 1967 г. формально предложил авторегрессионную оценку спектральной плотности. Независимо от него Д. Берг в 1967 г. ввел метод максимума энтропии, мотивируя этот метод геосейсмологическим приложением.

Если модель авторегрессии порядка \(p \) является приемлемой для данных, то плотность спектра может быть записана (см., например, Хеннан, 1964):

\[
\hat{f}(\omega) = \frac{\sigma^2}{1 + \sum_{j=1}^{p} a_j \cdot e^{-i\omega j}^2},
\]

(12)

Для того, чтобы оценить спектральную плотность необходимо оценить \(\{a_1, a_2, \ldots, a_p, \sigma^2\} \). При этом можно воспользоваться соотношением, связывающим параметры авторегрессии и последовательность автокорреляционной функции (Anderson, 1976), называемым уравнением Дла-Уолкера:

\[
\mu_k = \begin{cases}
- \sum_{j=1}^{p} a_j \mu_{k-j}, & \kappa > 0 \\
- \sum_{j=1}^{p} a_j \mu_{-j} + \sigma^2, & \kappa = 0
\end{cases}
\]

(13)

В матричной форме это можно записать:

\[
\begin{bmatrix} \mu_0 & \mu_{-1} & \cdots & \mu_{-p} \\
\mu_1 & \mu_0 & \cdots & \mu_{-p+1} \\
\vdots & \vdots & \ddots & \vdots \\
\mu_p & \mu_{p-1} & \cdots & \mu_0
\end{bmatrix} \begin{bmatrix} 1 \\
av_1 \\
\vdots \\
av_p
\end{bmatrix} = \begin{bmatrix} \sigma^2 \\
0 \\
\vdots \\
0
\end{bmatrix}
\]

(14)
Для решения этой системы можно воспользоваться рекуррентным
соотношением, называемым алгоритмом Левинсона-Дурринга, в котором
вычисляются поочередно \(\{a_{u}, \gamma_{u}^{2}\}, \{a_{k}, \gamma_{k}^{2}\}, ..., \{a_{p}, \gamma_{p}^{2}\} \)

\[
\begin{align*}
a_{k} &= -\frac{m_{k}}{m_{k-1}}, \\
\gamma_{k}^{2} &= (1 - |a_{k}|^{2}) \cdot \gamma_{k-1}^{2}
\end{align*}
\]

(a5)

\[
\begin{align*}
a_{kk} &= \frac{1}{\gamma_{k-1}^{2}} \left(\gamma_{k} + \sum_{j=1}^{k-1} a_{k-j} \cdot \gamma_{k-j} \right), \\
a_{ki} &= a_{k-i} + a_{kk} \cdot a_{k-i, k-i}, \quad i = 1, 2, ..., k-1 \\
\gamma_{k}^{2} &= (1 - |a_{kk}|^{2}) \cdot \gamma_{k-1}^{2}
\end{align*}
\]

При этом важно отметить, что полученные \(\{a_{u}, a_{k}, ..., a_{kk}, \gamma_{k}^{2}\} \)
являются теми же, если бы мы использовали (a5) для \(p = k \). Полезное свойство этого алгоритма заключается в том, что он дает оценки для параметров авторегрессии более низкого порядка. Это очень важно, так как на практике часто a priori не известен истинный порядок авторегрессии, а последовательное наращивание порядка авторегрессии позволяет уменьшать ошибку \(\gamma_{k}^{2} \) до желаемой величины. В частности, если процесс в действительности является процессом авторегрессии порядка \(p \), то \(a_{p+k} = \gamma_{k}^{2} \) для \(k = 1, ..., p \) и, следовательно, \(a_{p+k}, p+1 = 0 \). Поэтому \(\gamma_{k}^{2} = \gamma_{p}^{2} \) \(a_{kk} = 0 \) для \(k = p \). Таким образом, момент, начиная с которого \(\gamma_{k}^{2} \) в действительности не изменяется, является хорошим индикатором правильности выбора порядка модели. Свойство монотонного уменьшения ошибки \(\gamma_{1}^{2} \geq \gamma_{2}^{2} \geq ... \geq \gamma_{p}^{2} \) было показано в работе (Andersen, 1974).

Метод максимума энтропии при оценке спектральной плотности основан на экстраполяции отрезка автокорреляционной последовательности.
пос-ти для модели авторегрессии. Таким путем уменьшаются характерные искажения при использовании усеченной автореципрокационной последовательности, например, в оценке БГ. Причем экстраполяция должна быть такой, чтобы автореципрокационная последовательность была положительно полуопределенной. Д.Берт доказал, что экстраполяция будет такой, если временной ряд, характеризующийся экстраполированный автореципрокационной последовательностью, имеет макси-мальную энтропию:

\[H = \int_{-\infty}^{\infty} \ln f(\omega) \, d\omega \]

(16)

Вычислительная процедура для оценки \(\{a_p, a_p^2, \ldots, a_p^r, \sigma_p^2\}\) хорошо изложена в работе (Andersen, 1974). Некоторое улучшение этой процедуры с использованием весовой функции типа Тьюки-Кемминга предложено в работе (Swingler, 1979). Анализ и применение автореципрокационных методов оценки спектральной плотности (алгоритм Левинсона-Дурбина, Берта и его модификации в случае многомерных временных рядов) представлены в следующих работах (Ulrych, 1972; Radoski, Pougete, Zawalick, 1975; Lacroix, 1977).

Если модель описывающего среднего

\[X_t = \sum_{j=0}^{q} b_j \cdot \varepsilon_{t-j} \]

(17)

с

\[E[\varepsilon_t] = 0; \quad E[\varepsilon_t^2] = \sigma^2; \quad E[\varepsilon_t, \varepsilon_{t+m}] = 0 \]

описывает процесс порождающий реализацию временного ряда, то autorекорреляционная последовательность заливается:

\[\Gamma_k^p = \begin{cases} \sigma^2 \sum_{j=0}^{q-k} b_j \cdot b_{j+k}, & k = 0, 1, \ldots, q \\ 0, & k > q \end{cases} \]

(18)
Однако, если необходимо оценить только спектральную плотность, то нет необходимости решать неллинейное уравнение (18) для определения параметров модели.

Оценка спектральной плотности записывается:

$$
\hat{f}(\omega) = \sum_{j=-q}^{q} \hat{m}_j \cdot e^{-ij\omega}
$$

(19)

что совпадает с оценкой БТ (6).

Для смешанной модели авторегрессии–скользящего среднего

$$
X_t = \sum_{k=1}^{p} a_k X_{t-k} + \sum_{j=0}^{q} b_j \varepsilon_{t-j}
$$

(20)

$$
E[\varepsilon_t^2] = \sigma^2; \quad b_j \equiv 1
$$
oценка спектральной плотности записывается

$$
\hat{f}(\omega) = \frac{\sigma^2 |1 + \sum_{j=1}^{q} b_j \cdot e^{-ij\omega}|^2}{|1 + \sum_{k=1}^{p} a_k e^{ik\omega}|^2}
$$

(21)

Оценку параметров a_k и b_j можно производить итерационным процессом (см., например, Anderson, 1976). Однако, эффективной вычислительной процедуры не существует.

Если стохастический процесс содержит исключительно синусоиды о наложенным белым шумом, то существует возможность смоделировать его как специальный случай процесса авторегрессии–скользящего среднего. В отличие от модели периодограммы, эта модель предполагает, что синусоиды соотносятся в общем нелинейно (о некратными длине ряда периодами). Модель такого процесса записывается

$$
Y_t = X_t + \varepsilon_t
$$

(22)

$$
E[\varepsilon_t] = 0; \quad E[\varepsilon_t^2] = \sigma^2; \quad E[\varepsilon_t, \varepsilon_{t+k}] = 0; \quad k \neq 0
$$
\(E[X_t \cdot E_{t+k}] = 0 \) для любого \(k \).

Процесс, который содержит \(R \) синусоид в общем с нонкратными частотами. Его можно переписать в другом эквивалентном виде:

\[
\sum_{j=0}^{2^p} a_j Y_{t-j} = \sum_{j=0}^{2^p} a_j E_{t-j},
\]

где \(a_0 = 1 \).

Если обозначить векторы

\[
Y^T = [Y_t, Y_{t-1}, ..., Y_{t-2^p}],
\]

\[
A^T = [1, a_1, a_2, ..., a_{2^p}],
\]

\[
W^T = [E_t, E_{t-1}, ..., E_{t-2^p}],
\]

\[
R = \begin{bmatrix}
\mu_0 & \cdots & \mu_{-2^p} \\
\vdots & \ddots & \vdots \\
\mu_{2^p} & \cdots & \mu_0
\end{bmatrix}
\]

и учесть, что

\[
E[Y \cdot W^T] = E[(X+W) \cdot W^T] = E[W \cdot W^T] = \mathbf{\Sigma}_W.
\]

то придем к соотношению:

\[
R \cdot A = \mathbf{\Sigma}_W.
\]

(25)

которое является уравнением для собственных значений матрицы \(R \). Для процесса состоящего из \(R \) синусоид в аддитивном белом шуме показано, что \(\mathbf{\Sigma}_W \) соответствует минимальной собственной величине.
не \(R \), когда размерность \(R \) есть \((2^p+1)^x(2^p+1)\) или больше.

Уравнение (25) формирует основу гармонического разложения метода, развитого В.П. Писаренко. Эта процедура дает точные частотные мощности \(P \) действительных синусоид в белом шуме, при известной автокорреляционной функции. Значения частот находят из решения характеристического полинома:

\[z^{2^p} + a_i z^{2^p-1} + \ldots + a_{2^p-1} z + a_{2^p} = 0 \] \hspace{1cm} (26)

корни которого равны по модулю единице, а коэффициенты обладают свойством симметрии \(a_i = a_{2^p-i} \) благодаря структуре \(R \). Информация о фазах синусоид потеряна, так как предполагается известной только автокорреляционная последовательность.

К сожалению, не известна итерационная процедура для решения уравнения (25) порядка \(P \) на основе знания решения уравнения порядка \(P-1 \). Далее, на практике имеются только оценки автокорреляционной последовательности, так что исследователь должен сам выбирать число синусоид за порядок, при котором минимальная собственная величина \(\gamma \) мало изменяется по сравнению с такой же при порядке \(P-1 \).

В работе (Kay, Marple, 1981) рассматривается еще несколько методов оценивания спектральной плотности. Однако, на обзоре этих методов мы не будем останавливаться, потому что автору не известны работы по применению этих методов.

Особое значение имеет знание как меняется вид спектральной плотности при различных инвариантных во времени линейных преобразованиях случайного процесса. Дело в том, что на практике часто пользуются такими преобразованиями над реализациями случайного процесса, например, огражившение временного ряда при помощи скользящего среднего. Мы рассмотрим работы, в которых исследуются преобразования вида:

- 36 -
\[\mathcal{L}[X_t] = \sum_{j=-m}^{m} a_j X_{t,j}, \]
где \(m \) — целое число, \(X_t \) — случайный стационарный процесс, \(t \in 0, t1, t2, ... \), \(a_j \) — постоянные коэффициенты. Также преобразования являются частным случаем преобразований более общего вида:

\[\mathcal{L}[X_t] = \lim_{k \to \infty} \sum_{j=1}^{N_k} b_j^{(k)} X_{t_j, z_j^{(k)}} \]
(где предел последовательности случайных величин понимается в смысле сходимости в среднем квадратичном) и составляют важный класс линейных фильтров. Причем, мы будем рассматривать только симметричные фильтры, у которых \(a_j = a_{-j} \). Они обладают тем хорошим свойством, что не показывают фазу гармоник в спектральном представлении процесса (см., например, Бриллинер, 1980). Оказывается, что для таких преобразований вид спектральной плотности изменяется чрезвычайно просто:

\[g(\omega) = S(\omega) \cdot f(\omega) \]
(29)

где \(f(\omega) \) — спектральная плотность исходного процесса,
\(g(\omega) \) — спектральная плотность преобразованного процесса.
Функция \(S(\omega) \) является очень важной характеристикой преобразования.
Она называется частотной характеристикой (или передаточной функцией, или коэффициентом передачи) фильтра. Значения этой функции показывают как должны изменяться амплитуды гармоник исходного процесса при "прохождении" через фильтр.

Практически важной задачей становится умение определять коэффициенты фильтра, чтобы его частотная характеристика имела желаемый вид. Основная трудность состоит в том, что невозможно численно реализовать фильтр (вычислить коэффициенты фильтра), чтобы его
частотная характеристика оставалась прямоугольной, что чаще всего и требуется при выделении какой-нибудь частотной полосы. Всякая его разумная реализация (таким критерием может служить "ближность" задаваемой и получаемой частотных характеристик) будет иметь частотную характеристику осцилирующую около идеальной прямоугольной, образуя нежелательные боковые волны.

Существует обширная литература, посвященная численной реализации указанных выше фильтров. Такие фильтры радиоинженеры, геофизики и специалисты связанные с электроникой называют рекурсивные импульсные фильтры с конечной областью отклика. Из всего множества постановок задач при построении таких фильтров условно можно выделить два типа. Первый — специальные фильтры. Такие фильтры служат для решения некоторых специальных частных задач. Например, сглаживание временного ряда при помощи скользящего среднего с равными весами. При этом устраняются высокочастотные составляющие во временном ряду. Нормальный фильтр, коэффициенты которого равны значениям плотности нормального распределения на интервале их задания (Серебренников, Первоэзванский, 1965; Матушевский, Привальский, 1968):

$$a_j = \begin{cases} \frac{1}{\sqrt{2\pi}} e^{-\frac{j^2}{2\sigma^2}}, & |j| < m \\ 0, & |j| > m \end{cases}$$ (30)

Особенно необходимо отметить работы (Parka, McClellan, 1972; McClellan, Parks, Rabiner, 1973; McClellan, Parks, 1973). Для построения оптимального фильтра они использовали задачу аппроксимации частотной характеристики полиномами Чебышева. Преимущество такого фильтра заключается в том, что исследователь может контролировать величину и положение нежелательных всплесков реализуемой частотной характеристики. В статье этих авторов (McClellan, Parks, Rabiner, 1973) приведена распечатка программы на языке Фортран для построения такого фильтра. Мы использовали эту программу и считаем, что она дает хорошие результаты. Такой фильтр представляет интерес в тех случаях, когда отсутствует достоверная информация о форме спектра исходного ряда, и необходимо выделить некоторую частотную полосу фильтром заданный длины о минимальным риском "загрязнения" отфильтрованного ряда составляющими из-за незанесемой частотной полосе.

Выводы

I. Использование дендрохронологического анализа в различных областях знания является перспективным. Он дает полезную информацию для реконструкции и прогноза климатических элементов, для датировки событий прошлого, для решения некоторых вопросов восходения, динамики различных природных явлений и других. Однако, при этом важно учитывать биоэкологические основы дендрохронологии. Неверная датировка, грубое индексирование, неоправданное усреднение, недоучет специфичности дендрохронологических рядов может привести к ошибочным результатам.
2. Требуется разработка более совершенных методов построения обобщенных и генерализованных дендрохронологических рядов, которые более точно отражают бы изменение лимитирующих рост факторов для однородных районов. Такая разработка должна осуществляться на основе моделей реакции деревьев на лимитирующее воздействие.

3. Большой объем вычислительных работ требует широкого использования электронно-вычислительной техники, соответствующих статистических методов и программного обеспечения. В настоящее время при дендрохронологических исследованиях большинство математических методов применяется либо эпизодически, либо используются не в полной мере. К таким методам относятся спектральный анализ, методы фильтрации, теория статистического оценивания и выводов. Необходимо проведение тщательного анализа для обоснования применения соответствующих методов при анализе дендрохронологической информации.

4. Дендрохронология осознает принципиальную возможность распределения рядов прироста на циклические компоненты. Однако, употребляемые понятия и термины плохо определены. Количественные характеристики цикла (амплитуда, фаза и период) недостаточно отражают существенные черты циклической компоненты, так как циклы часто претерпевают обон. Необходимо разработка математической модели, отражающей сущность циклического характера в динамике прироста древесины.
ЛИТЕРАТУРА

Андерсон Т. Статистический анализ временных рядов.—М.: Мир, 1976.—756 с.

Бенчад Д., Питсоль А. Применение корреляционного и спектрального анализа.—М.: Мир, 1983.—312 с.

Берри Б.Л., Либерман А.А., Шиятов С.Г. Периодические колебания индексов прироста лиственных и сибирской в Тазовской лесотундре и их прогноз.—Экология, 1979, № 6, с. 22—26.

Берри Б.Л., Либерман А.А., Шиятов С.Г. Восстановление и прогноз температур северного полушария по колебаниям индексов прироста деревьев на полярной границе леса.—Вест. Моск. ун-та. Сер. 5, география, 1983, № 4, с. 41—47.

Битвинкас Т.Т. К вопросу о применении дендрохронологических методов в лесном хозяйстве.—Доклады Тимирязевской с.-х. акад., I965, вып. II5, ч. 2, с. 201—207

Битвинкас Т.Т. Динамика прироста сосновых насаждений Литовской ССР и возможности ее прогноза.—Автореф. дисс. на соиск. учен. степ. канд. с.-х. наук.—М., 1966.—15 с.

Битвинкас Т.Т. Дендроклиматические исследования.—М.: Гидрометцентр, 1974.—172 с.

Борщева Н.М. Дендроэкологический анализ радиального прироста ели Щерка в горах Северного Тянь-Шаня.—Автореф. дисс. на соиск. учен. степ. канд. биол. наук.—Свердловск, 1983.—20 с.

Брюхиндер Д. Временные ряды. Обработка данных и теория.—М.: Мир, 1980.—536 с.

Баганов Е.А., Терсков И.А. Анализ роста деревьев по структуре годичных колец.—Новосибирск: Наука, 1977.—94 с.

Баганов Е.А., Терсков И.А. О количественных закономерностях...— 41 —
видуального роста деревьев. – В кн.: Анализ динамики роста биологоческих объектов. – М.: Наука, 1978, с.15–27
Гелазий Г.Г. Ботанический метод определения дат высоких исторических горизонтов (ЕГ) воды на Байкале. – Бот. журнал, 1956, т.41, № 7, с.1006–1020
Гелазий Г.Г. К вопросу об условиях роста деревьев на берегах Байкала. – Бот. журнал, 1959, т.44, № 5, с.696–704
Гелазий Г.Г. Динамика роста древесных пород на берегах Байкала в связи с циклическими изменениями уровня воды в озере. – В кн.: Геоботанические исследования на Байкале. – М., 1967, с.44–301
Горинский Г.Б. Опыт анализа погодной динамики продуктивности еловых древостоев в биогеоценозах верной тайги. – В кн.: Экспериментальное изучение биогеоценозов тайги. – Л.: Наука, 1969, с.33–49.
Дроздов О.А., Малкова И.В. К вопросу об использовании автокорреляционной функции для анализа очень длинных дендрохронологических рядов. – В кн.: Дендроклиматология и радиоуглерод. – Каунас, 1972, с.165–168
Колышук В.Г. Морфогенез и динамика прироста зелёной ольхи (Alnus viridis O.C.) в Украинских Карпатах.- Бюл. Момск. об-ва испытателей природы. Отд. биол., 1965, т. 70, № 1, с. 103-110.
Колышук В.Г. Динамика прироста горной сосны (Pinus mugo S. f.) в связи с солнечной активностью.- Докл. АН СССР, 1966, т. 167, № 3, с. 710-713
Колышук В.Г. О продуктивности древесных ценозов в крайних климатических условиях на примере криволесья горной сосны в Карпатах.- Лесоведение, 1968, № 4, с. 23-38
Колмогоров А.П. Интерполирование и экстраполирование стационарных случайных последовательностей.- Изв. АН СССР, сер. матем., 1941, № 5, с. 3-14
Колчич Б.А. Дендрохронология Новгорода.- Материалы к исследованию по археологии СССР, 1963, т. 3, № 117, с. 5-103
Комин Г.Е. Лесоведение и дендрохронология.- Лесоведение, 1968, № 4, с. 73-86
Комин Г.Е. Динамика прироста сосны в Казахстане в связи с солнечной активностью.- Солнечные данные, 1969, № 8, с. 113-117
Комин Г.Е. К методике дендроклиматологических исследований.–Тр./ Ин-та экологии раст. и живот. УФАН СССР, 1970 а, вып.67, с.234-241
Комин Г.Е. Цикличность в динамике прироста деревьев и древостоев сосны таежной зоны Западной Сибири.–Изв. СО АН СССР, 1970 в, сер. биол., № 15, вып.3, с.36-44
Комин Г.Е. Цикличность в динамике лесов Зауралья.–Автореф.дисс.
Комин Г.Е. Экологическая сущность циклической динамики лесов.–Экология,1981, № 3, с.46-53
Костин С.И. Связь колебаний прироста деревьев с солнечной активностью.–Лесное хоз.-во, 1965, № 4, с.12-14
Кофман Г.Б., Кузьминчев В.В., Хлебопрос Р.Г. Использование параметров уравнения роста древостоев в задачах классификации.–В кн.: Математический анализ компонентов лесных биогеоценозов.–Новосибирск, 1979, с.5-14.
Ловеллмус Н.В. Теплообеспеченность гор Путорана и ледовитость Балтики.–Изв.Всес.географ.о-ва,1970 а, т.I02, вып.1.,с.63-65
Ловеллмус Н.В. Влияние извержений вулканов на растительность Камчатки.–Бот.журнал,1970 б, т.55, № 11, с.1630-1633
Мазепа В.С. Соотношение циклов в дendirхронологических рядах. —
В кн.: Проблемы экологии, рационального использования и охраны природных ресурсов на Урале.—Свердловск, 1980, с.65–66
Мазепа В.С. Метод расчета индексов годичного прироста обобщенного дendirхронологического ряда. —Экология, 1982, № 3, с.21–28
Молчанов А.А. Дendirхронологические основы прогнозов погоды.—
М.: Наука, 1976.—176 с.
Никифоров И.В. Последовательное обнаружение изменения свойств временных рядов.—М.: Наука, 1983.—200 с.
Одум Ю. Основы экологии.—М.: Мир, 1975.—740 с.
Отнес Р., Эноксон Л. Прикладной анализ временных рядов. Основные методы.—М.: Мир, 1982.—428 с.
Рабинер Л.Р., Гоулд В. Теория и применение цифровой обработки сигналов.—М.: Мир, 1978.—254 с.
Рачко П. Имитационная модель динамики роста дерева. Построение модели.—Журнал общей биологии, 1978, т.39, № 4, с.563–571
Рачко П. Имитационная модель динамики роста дерева как элемент лесного биогеоценоза.—В кн.: Вопросы кибернетики, управления и оптимизации в экологических системах.—М., 1979, вып.52, с.73–111.
Рубиаштейн Е.С., Полозова Л.Г. Современное изменение климата.—Л.: Гидрометеоиздат, 1966.—268 с.
Рудаков В.Е. Метод обработки годичных колец деревьев для выявления влияния колебаний климата на их толщину.—Докл. АН СССР, 1952, т.84, № 1, с.169–171.
Рудаков В.Е. О зависимости прироста дерева от величин прироста предшествующего года.—Изв. вузов. Лесной журнал, 1963, № 4, с.27–30

- 45 -
Слуцкий Е.Е. Сложение случайных величин как источник циклических процессов. - В кн.: Вопросы конъюнктуры. - М., 1927, т.3, вып.1, с.34-64
Ступнева А.В., Битвинская Т.Т. Динамика прироста сосны в спектральный анализ на различных участках профиля Мурманская область Закарпатье. - В кн.: Условия среды и радиальный прирост деревьев. - Каунас: Ин-т ботаники АН Лит.ССР, 1978, с.70-73
Турманина В.И. Анализ крепи для индикации охлоповых процессов. - В кн.: Материалы Всеосовещания-научной конференции по вопросам дендрохронологии и дендроклиматологии. - Вильнюс, 1968, с.139-143.
Феклистов П.А. Дендроклиматический анализ прироста по диаметру в сосняке мохово-лишайниковом северной тайги. - Десовещение, 1978, № 2, с.23-28
Хинчин А.Я. Теория корреляции стационарных стохастических процессов. Пер. с нем. - Успехи мат.наук, 1938, вып.5, с.42-51
Шиятов С.Г. Верхняя граница леса на Полярном Урале и ее динамика в связи с изменениями климата. - В кн.: Докл.Первой научной конференции молодых специалистов-экологов. - Свердловск, 1962, с.37-48
Шиятов С.Г. К методике расчета индексов прироста деревьев. - Экология, 1970, № 3, с.85-87
- 46 -
Шлятов С.Г. Дендрохронологическое изучение ели сибирской в нижней реки Таза.- В кн.: Дендроклиматохронология и радиоуглерод.- Куйбышев, 1972 а, с. 76-81

Шлятов С.Г. Дендрохронология Мангазеи.- В кн.: Проблемы абсолютного датирования в археологии.- М., 1972 б, с. И-121

Шлятов С.Г. Дендрохронология, ее принципы и методы.- Зап. / Свердловское отд.-ие Всес. бот. об.-ва, 1973, вып. 6, с. 53-81

Шлятов С.Г. Сверх вековой цикл в колебаниях индексов прироста лиственницы (Larix sibirica) на полярной границе леса.- В кн.: Биоэкологические основы дендрохронологии. Материалы к симпозиуму XII Междунар. бот. конгресса.- Вильнюс, А., 1975, с. 47-53

Шлятов С.Г. О некоторых неправильных подходах к дендрохронологическим исследованиям.- Экология, 1979 а, № I, с. 25-36

Шлятов С.Г. Пути устранения неоднородности дендрохронологических рядов.- В кн.: Продуктивность и рациональное использование растительности Урала.- Свердловск, 1980 а, с. 90-100

Шлятов С.Г., Мазепа В.С. Прогноз тенденций климатогенных смен лесной растительности в Большеzemельской и Западносибирской лесотундре.- В кн.: Биологические проблемы севера. Тезисы X Всес. симпозиума.- Магадан, 1983, с. 173

Цицкин Я.А. Новая математическая функция роста.- Изв. вузов. Лесной журнал, 1982, № 2, с. 32-35

Яглом А.М. Корреляционная теория стационарных случайных функций.

Giddings J.L.Jr. Dendrochronology in Northern Alaska.-University - 48 -
Grosenbaugh L.R. Generalisation and reparameterization of some sigmoid and other nonlinear functions.—Biometrics, 1965, vol. 21, p. 708-714
Hari R, Siren G. Influence of some ecological factors and the seasonal stage of development upon the annual ring width and radial growth index.—Department of reforestation, Stockholm, 1972, No. 40, p. 1-22
Huber B. Uber die Sicherheit Jahrringchronologischer Datierung.—Holz als Roh - und Werkstoff, 1943, Jg. 6, H 10/12, p. 263-268
LaMarche V.C., Fritts H.G. Tree-ring and sunspot numbers.—Tree-ring Bulletin, 1972, vol. 32, p. 19-23

-49-

- 50 -

Taylor W.P. Significance of extreme or intermittent conditions in distribution of species and management of natural resources, with a restatement of Liebig's law of the minimum.—Ecology, 1934, vol. 15, p. 274-379

