Броздняков Владимир Валентинович

На правах рукописи

УДК 574: 591. 524: 599.322.3

Экология реакклиматизированной популяции бобра в условиях антропогенной нагрузки

03.00.16 - экология

АВТОРЕФЕРАТ

диссертации на соискание ученой степени кандидата биологических наук

> ЕКАТЕРИНБУРГ 1998

Института экологии растений и животных Уральского отделения РАН	
Научный руководитель:	доктор биологических наук, старший научный сотрудник Жигальский О. А.
Официальные оппоненты:	доктор биологических наук, профессор Добринский Л. Н. кандидат биологических наук, доцент Симак С. В.
Ведущая организация:	Самарский Государственный Университет
Защита состоится " У " Оч 1998 года в / часов на заседании диссертационного совета Д.002.05.01. в Институте экологии растений и животных уральского отделения РАН по адресу: 620144 г. Екатеринбург, ул. 8 Марта, 202.	
С диссертацией можно ознакомиться в научной библиотеке Института экологии растений и животных Уральского отделения РАН	
Автореферат разослан "	1998 года.
Ученый секретарь диссертационного совета кандидат биологических наук Нифонтова М. Г.	

Работа выполнена в лаборатории экологической экспертизы и прогнозирования

ОБШАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы. Экология бобра (Castor fiber Linnaeus, 1758), как ценного промыслового вида изучалась достаточно подробно в различных географических зонах, но, несмотря на большое количество работ, недостаточно изучены закономерности развития популяций в районах с антропогенной нагрузкой, большинство работ сделано на охраняемых территориях. В настоящее время крупные группировки бобра существуют далеко за пределами заказников и заповедников, поэтому представляет значительный интерес исследование адаптивных возможностей и особенностей развития колоний бобра в районах, где влияние человека и его деятельности на экосистемы значительно. Самарская область как один из густонаселенных районов с интенсивной хозяйственной деятельностью, с разветвленной сетью рек и озер, представляет собой хорошую возможность для изучения этих закономерностей.

Реакклиматизация бобра в бассейне р. Самары началась в 1962 году. Хотя бобры успешно расселились за эти годы, работы по изучению биологических особенностей их популяции не проводили.

Один из основных факторов, влияющих на колонии бобра - кормовые условия, кормодобывающая деятельность зверя оказывает существенное влияние на прибрежные древостои. По территории Самарской области проходит граница между лесостепной и степной растительными зонами. Леса здесь испытывают неблагоприятное воздействие засушливого климата и антропогенное давление, вследствие интенсивной хозяйственной деятельности. Представляет интерес решение вопроса о том, как в этих условиях сказывается на прибрежных древостоях кормодобывающая активность бобра, и может ли кормовой фактор быть решающим для развития колоний в условиях антропогенной нагрузки.

Цель и задачи работы. Цель работы - изучение особенностей экологии реакклиматизированной популяции бобра Самарской области и оценка влияния на нее антропогенных и кормовых факторов.

В связи с этим были поставлены следующие задачи:

- 1. Изучить процессы формирования пространственной структуры группировок с момента интродукции.
- 2. Оценить влияние трофической емкости биотопов на бобровые колонии и воздействие кормодобывающей деятельности бобра на прибрежные фитоценозы.
- 3. Исследовать особенности демографической и пространственной структуры колоний бобра Самарской области в биотопах с разным уровнем антропогенной нагрузки.

Научная новизна. Впервые изучены закономерности формирования пространственной структуры популяции бобра в Самарской области с момента выпуска до настоящего времени, исследована численность и демографическая структура группировок в 1994 - 1996 годах и оценено влияние определяющих их факторов. Показаны региональные особенности экологии реакклиматизированной популяции бобра и особенности ее экологии в условиях высокой антропогенной нагрузки.

Положения, выносимые на защиту. 1. Показано, что бобры, реакклиматизированные в бассейнах рек Самара и Сок, успешно рассселились по водоемам области, сформировали устойчивые и жизнеспособные группировки. Скорость расселения бобра по рекам Самара и Волга составляла в 1962 - 1979 годах 16 км в год.

- 2. Трофическая база биотопов не является фактором, лимитирующим развитие популяции бобра в Самарской области. Изъятие бобрами древесных кормов чаще всего существенно ниже годового прироста и, в большинстве случаев, не превышает 3% от общего запаса древесных кормов, поэтому кормодобывающая деятельность бобра не оказывает решающего воздействия на прибрежные древостои.
- 3. Общее изъятие древесной растительности одним бобром на озерных поселениях более, чем в два раза превосходит изъятие на русле реки. Это обусловлено структурой прибрежных древостоев.
- 4. Основные факторы, лимитирующие расселение и численность бобров в Самарской области можно выстроить в следующем порядке: нарушения гидро-

режима, влияние прямого преследования, загрязнение вод, фактор беспокойства.

Практическая значимость. Результаты работы могут применяться при планировании мероприятий по реакклиматизации бобра и при охотоустройстве угодий. Результаты исследований были использованы в учебном процессе на биологических факультетах Самарского и Уральского Государственных Университетов.

Научная значимость. Полученные результаты имеют научную значимость для разработки теоретических основ работ по реакклиматизации. Достоверность полученных результатов определяется большим объемом материала, собранного с использованием стандартных методик и статистически обработанного.

Апробация работы. Результаты исследований докладывались и обсуждались на конференциях "Проблемы общей и прикладной экологии " (Екатеринбург, 1996), "Проблемы изучения биоразнообразия на популяционном и экосистемном уровне " (Екатеринбург, 1997).

Публикации. По теме работы опубликованы 3 статьи, 1 тезисы.

Структура и объем работы. Диссертация состоит из введения, 4 глав, выводов, списка литературы, включающего 166 источников, из них 24 иностранных авторов и приложения, изложена на *127* страницах, содержит 28 рисунков и 10 таблиц.

Глава 1. ПРОСТРАНСТВЕННАЯ И ДЕМОГРАФИЧЕСКАЯ СТРУКТУРА ПОПУЛЯЦИИ БОБРА И ОСНОВНЫЕ ОПРЕДЕЛЯЮЩИЕ ЕЕ ФАКТОРЫ

По литературным данным описаны особенности пространственных и демографических характеристик популяций бобра в разных регионах и дана оценка основных факторов, определяющих динамику популяций.

Глава 2. МАТЕРИАЛ И МЕТОДЫ ИССЛЕДОВАНИЯ

Исследования проводились в марте - декабре 1994 - 1996 годов. Объектом исследований послужили поселения бобра по рекам Самара, Большой Кинель. Сок по их притокам, старицам и пойменным озерам, в Самарской и Оренбургской областях. Каждый год обследовали 505 км по руслам рек и 220 км береговой линии озер.

В 1994, 1995 годах 50% поселений обследовали дважды весной и осенью, в 1996 году дополнительно обследовали 8 озер в пойме р. Большой Кинель и 80 км русла р. Сок.

Учтено в 1994 году 747 бобров, обитающих в 298 поселениях, в 1995 году - 811 бобров в 283 поселениях, в 1996 году - 794 бобра в 312 поселениях. Полевые работы проведены в течение 384 дней. В 1994 и в 1996 годах собирался полевой материал в Воронежском заповеднике, использовались данные Летописи Природы ВГБЗ.

В пойме р. Самары обследовали 223 км русел рек и 206 км береговой линии озер. Условно эту группировку мы разделили на три части: в Волжском, Кинельском и Борском районах по градиенту уровня антропогенной нагрузки. На р. Большой Кинель было обследовано 176 км русла. Данную группировку подразделили на поселения, находящиеся выше г. Отрадного и колонию в нижнем течении, эти участки различны по уровню антропогенных воздействий. Каждый год обследовали 103,5 км русла р. Сок и притоков.

При оценке численности бобров использован эколого-статистический метод (Дьяков, 1975). Возрастной состав поселений определялся с помощью морфоэкологического метода Федюшина-Соловьева (Соловьев, 1971; Дьяков, 1975).

Бонитировка биотопов проводилась по методу Ю. В. Дьякова (1975). При определении уровня антропогенной нагрузки в бонитировочную таблицу были дополнительно внесены графы "Перепады уровня воды зимой". "Продолжительность весеннего паводка", "Загрязнение вод".

При определении общего запаса древесных кормов на территории бобрового поселения, использовался метод закладки пробных площадей 20×100 метров, с последующим пересчетом всех произрастающих на пробной площади деревьев. Запас кормов переводился в условные кормовые единицы (УКЕ) по

пересчетной таблице для полностью сгрызенных бобрами деревьев (Дьяков, 1975). В 1994 году было заложено 27 площадей на водоемах Самарской области и 10 на территории ВГБЗ. В 1995 году заложено 27 площадей в Самарской области.

За общий запас древесных кормов на территории поселения принимался объем древесной растительности на пробной площади в УКЕ, умноженный на частное от деления общей площади на пробную. Изъятой считали древесную растительность, отторгнутую бобром в УКЕ. Потребленной принимали ту часть изъятой растительности, которая съедена зверем. Для изучения влияния кормодобывающей деятельности бобров на прибрежные фитоценозы и определения соотношения изъятия и восстановления древесной растительности использовался метод повторной закладки пробных площадей.

Использовался метод опроса охотоведов, егерей, охотников и местных жителей. Анализировались данные Госохотинспекции и лаборатории мониторинга загрязнения поверхностных вод.

Статистическая обработка данных проводилась с помощью прикладных пакетов программ "Statistica", "Excel".

Глава 3. ОСНОВНЫЕ ХАРАКТЕРИСТИКИ ПОПУЛЯЦИИ БОБРА САМАРСКОЙ ОБЛАСТИ.

Реакклиматизация бобра в бассейнах рек Сок, Самара и Большой Кинель проходила в несколько этапов. Первый выпуск был осуществлен в 1962 году на охраняемой территории "Бузулукский бор"- в пойме р. Самары заселили 29 бобров Кроме того в 1979 году на территории Самарского заказника выпустили 22 бобров. В 1977 в пойме р. Сок были выпущены две партии - 21 и 12 бобров в озеро Старица и р. Сок на территории Сокского заказника. В 1979 году 12 зверей выпустили в пойме р. Большой Кинель в Шиповском заказнике.

Бобры расселились по р. Самаре до устья и далее по р. Волге. На р. Волге из-за нарушений гидрорежима, вызванных подпором Саратовской ГЭС, нет ру-

словых поселений, отдельные семьи бобров встречаются на пойменных оз рах, где более стабильный гидрорежим.

На р. Самаре бобрами заселено практически все русло за исключением участка в нижнем течении, где действует комплекс неблагоприятных факторов антропогенного происхождения. Большинство пойменных озер, притоков и стариц р. Самары, на которых условия благоприятны, также заселено ими.

В пойме р. Самары преобладают озерные поселения - 66,1% - 69,1% от всех семей, что характерно для речных систем с множеством пойменных водоемов. В бассейне р. Большой Кинель помимо многочисленных русловых поселений, существуют поселения на озерах, но их количество не так велико как в пойме р. Самары.

Для Сокской группировки характерно то, что большинство поселений находится на руслах рек. Имеется одно поселение на пойменном озере, но общей тенденции заселения замкнутых водоемов нет.

Наиболее высокая и сходная в разных районах плотность заселения на пойменных водоемах (2,8 - 3,4 бобра/км озера). Для русла р. Самары, напротив, характерно более высокое варьирование плотности заселения между отдельными участками. Самая низкая плотность заселения р. Самары в Волжском районе - 0,2 - 0,4 бобра/км; в Кинельском районе плотность наоборот очень высока - 1,8 - 2,5 бобра/км русла.

Во всех районах плотность заселения русла в несколько раз ниже, чем на озерах. Плотность заселения озер по всей пойме р. Самары в 1994 - 1996 годах выше, чем на руслах рек Самарской области в 2,5 - 6 раз. Особо низкая плотность бобра характерна для р. Большой Кинель - 0,4 - 0,5 бобра/км русла, кроме того, основная часть Кинельской группировки сосредоточена на территории Шиповского заказника. Для рек Самара и Сок показатели плотности заселения сходны и значительно выше, чем на р. Большой Кинель - 0,8 - 1,4 бобра/км русла.

На р. Большой Кинель, как и на р. Самаре, наблюдается очень низкая плотность бобра на участках с высоким уровнем антропогенной нагрузки- 0,1 - 0,2 и 0,8 - 1 бобра/км русла соответственно.

Негативное влияние на колонии бобра оказывают нарушения гидрорежима. На р. Самаре в 1994 - 1996 годах плотность заселения участков рек с ненарушенным гидрорежимом составляла 1,2 - 1,5 бобра/км, что значительно выше, чем в зоне подпора Саратовской ГЭС - 0,5 - 0,9 бобра/км. Аналогичная картина наблюдалась на р. Большой Кинель. На приустьевом участке р. Самары протяженностью 41 км, находящемся под сильным влиянием Саратовской ГЭС в 1995, 1996 годах не было ни одного поселения бобра.

Плотность заселения бобра на охраняемой территории р. Большой Кинель в 1994 - 1996 годах в 3 - 7 раз выше, чем на неохраняемой территории: 1,0 - 1,5 и 0,2 - 0,3 бобра/км русла соответственно. На р. Сок разница в плотности заселения заказника и неохраняемой территории в 1994, 1995 годах менее значительна, но плотность заселения Сокского заказника возросла в 1996 году до 1,8 бобра/км, а на неохраняемой части русла, напротив, снизилась до 0,6 бобра/км русла. Плотность заселения неохраняемого русла р. Сок в Сергиевском районе в 1996 году - 0,3 бобра/км. Плотность заселения охраняемого русла р. Самары в 1994, 1995 годах - 2,0 бобра/км русла превышала заселенность неохраняемых участков - 1,4 бобров/км русла, но в 1996 году произошел спад численности бобров на охраняемой территории до 0.8 бобра/км русла.

Высокая мобильность семей отмечена на р. Большой Кинель ниже г. Отрадного: доля покинутых поселений от общего числа жилых в 1995 году - 62,5%, в 1996 году - 37,5%. В благоприятных условиях семьи обитают на одном месте десятки лет. На участке р. Большой Кинель выше г. Отрадного этот показатель в 1995, 1996 годах составлял 19,4% и 3,4%. На других обследованных водоемах доля покинутых поселений не превышала 27,3%.

В конце 80-х годов на реках Самара и Большой Кинель сформировалась современная пространственная структура колоний, численность бобров стабилизировалась. На р. Сок структура группировки близкая к современной сложи-

лась в конце 80-х - начале 90-х годов. Почти все обследованные участки русла р. Сок и притоков заселены зверем, продолжается расселение и за пределами района исследований.

Самая высокая численность зверя в 1994 - 1996 годах в пойме р. Самары - от 552 до 623 бобров на русле и пойменных озерах. Можно заметить, что на р. Сок в 1995 году отмечался спад численности со 105 до 86 бобров, в 1996 году численность увеличилась до 119 зверей. На р. Большой Кинель численность стабильно низкая - 76 - 86 бобров.

О состоянии популяции можно судить по ее возрастной структуре. В устойчивых популяциях доля взрослых зверей - 45-55%, годовиков - 15-25%, сеголеток - 25-35% (Дьяков, 1975). На р. Самаре эта структура близка к оптимальному варианту. На р. Сок доля сеголеток в разные годы колеблется от 16,4% до 25,8%. На р. Большой Кинель доля сеголеток ниже и изменяется от 15,8% до 17,8%, различия статистически достоверны во все годы.

Самое малое число бобров в поселении на р. Большой Кинель 1,9 - 2,1 бобра в поселении, различие с р. Самарой, р. Сок, озерами поймы р. Самары достоверно. Средняя величина поселения в пойме р. Самары в 1994 - 1996 годах составляла 2,3 - 3,4 бобра в поселении.

Важным показателем при изучении популяции является доля одиночных бобров. На русле р. Самары доля поселений с одиночными особями варьировала по годам от 11,8% до 32,1%, на озерах - от 26,8% до 35,2%, на р. Сок от 12,5% в 1994 году до 42,8% в 1996 году. На р. Большой Кинель, в 1995, 1996 годах доля одиночных бобров достоверно выше, чем на р. Самаре и выше, чем на р. Сок в 1994, 1996 годах. Особенно резко увеличилось число олиночных животных на участке русла ниже г.Отрадного - от 25% в 1994, 1995 годах до 87,5% в 1996 году.

Доля поселений одиночных особей различалась на разных участках поймы р. Самары: в 1994 году в Волжском районе по общей выборке для рек и озер доля одиночных животных составляла 39,4%. В 1995, 1996 годах, когда гидрорежим р. Самары характеризовался меньшей водностью, доля одиночных боб-

ров на этом участке русла и пойменных водоемах уменьшилась и составляла 18,2% и 11,5%.

В Воронежском заповеднике доля одиночных бобров изменялась в 1984 - 1995 годах от 5,7% до 16,9%.

Сравнение количества семей с приплодом по речным группировкам подтверждает предположение о том, что на р. Большой Кинель в 1994 - 1996 годах и на р. Сок в 1995, 1996 годах был большой отход молодняка или прохолостание самок, доля семей с приплодом на этих реках меняется от 41,2 % до 44,4%. В пойме р. Самары доля поселений с приплодом выше, чем на р. Большой Кинель: на озерах - 68,8% - 85,7%, на русле р. Самары 68,5% - 88,9%.

Основной породой, используемой бобрами в питании на территории Самарской области является ива - преобладающая древесно-кустарниковая порода в местах поселений. Число поселений с преобладанием ив в прибрежных древостоях на р. Большой Кинель составляет 86,7%, на р. Сок - 85,3%, на р. Самаре - 89,9%, на озерах поймы р. Самары доля их достоверно ниже - 57%.

В рационе потребляемых бобром древесных кормов на р. Самаре доля ивы от общего объема в УКЕ составляет 85,6%, на р. Сок доля ивы - 92,1%, на р. Большой Кинель - 99,7%. На русле р. Самары доля тополей, составляет 14,4% от потребленного объема. На реках Сок и Большой Кинель бобры поедают также клен американский, ольху и вяз, но объем их потребления значительно ниже.

На озерах поймы р. Самары доля ивы - 46,1%, осины - 12,2%, осокорь, гополь белый и тополь серебристый в сумме составляют 28%, доля вяза - 9,5 %, использование дуба составляет 2.6% от общего объема потребленных кормов в УКЕ.

Видовой состав древесных кормов, используемых бобром в Воронежском заповеднике, разнообразен, как и на пойменных озерах Самарской области. Здесь также чаще всего используется ива - 76,9%, доля осины - 8,4%, дуба - 5,4%, лещины - 3,6%, ольхи - 1,1%.

При изучении отношения потребления к изъятию разных пород деревьев в Самарской области и ВГБЗ установлено, что во всех группировках она ста-

бильно высокая для ивы - 86% на озерах и 94% на р. Самаре и в Воронежском заповеднике. По другим породам этот показатель неустойчив и меняется в различных местообитаниях. В воронежской популяции прослеживается низкая доля потребления от общего изъятия для ольхи - 42% и дуба - 66% по сравнению с другими породами, где она колеблется от 83% до 100%.

На русле р. Большой Кинель 100% поселений существуют в условиях избыточных запасов древесной растительности, на р. Самаре таких поселений 87,2%, на русле р. Сок - 71,9%, на озерах поймы р. Самары - 88,3%. Поселений среднеобеспеченных древесными кормами на р. Сок - 15,6%, на р. Самаре - 12,8%, на озерах поймы р. Самары - 8,7%. Поселений с недостатком древесных кормов на р. Самаре нет, на р. Сок - 12,5%, на озерах поймы р. Самары - 3% В Воронежском заповеднике поселений с избытком древесных кормов 69,2%, поселений среднеобеспеченных кормами - 26,2%, в условиях недостатка древесных кормов обитают 4,6% бобровых семей.

Количество изъятых за один год бобрами одного поселения древесных кормов в Самарской области изменялось от 0,02% до 9,1% от общего запаса древесной растительности на территории поселения в УКЕ. По общей выборке 1994 и 1995 годов доля поселений с изъятием древесных кормов до 3% в год составляет 91,2%.

Глава 4. ОСНОВНЫЕ ТЕНДЕНЦИИ ФОРМИРОВАНИЯ
ПРОСТРАНСТВЕННОЙ И ДЕМОГРАФИЧЕСКОЙ СТРУКТУРЫ
ПОПУЛЯЦИИ БОБРА САМАРСКОЙ ОБЛАСТИ И ОЦЕНКА
ФАКТОРОВ, ОПРЕДЕЛЯЮЩИХ ЕЕ СОСТОЯНИЕ

Анализируя процесс расселения бобров по рекам Самарской области, можно заметить две тенденции в развитии колоний. На реках Самара и Большой Кинель наблюдалась характерная для рек с развитой поймой и большим количеством пойменных озер и стариц картина. Сначала звери заселяют пойменные водоемы с благоприятными для них условиями обитания, река на этом этапе используется лишь в качестве пути для расселения и только когда все пойменные озера оказываются занятыми, животные начинают заселять русло.

Прямо противоположная тенденция наблюдается в бассейне р. Сок. Здесь сразу же после выпуска бобры стали селиться в русле р. Сок и по его притокам. Одна из причин этого - менее развитая по сравнению с р. Самарой пойма р. Сок, здесь намного меньше пойменных озер, более интенсивная сельскохозяйственная деятельность, и связанная с ней антропогенная нагрузка. Но даже те пойменные озера, где условия благоприятны для бобров, заселялись ими редко.

Средняя скорость расселения бобров по р. Самаре и р. Волге составляла 16 км в год. Сравнительно высокая скорость расселения бобра по р. Самаре и р. Волге объясняется тем, что животные расселялись на данном участке вниз по течению, кроме того, некоторые участки в районе крупных населенных пунктов звери вынуждены были пропускать из-за высокой антропогенной нагрузки.

Группировки бобров Самарской области в целом устойчивы и жизнеспособны, можно считать, что реакклиматизация бобра прошла успешно. В пойме р. Самары почти все пригодные для бобра водоемы заселены им, динамично развиваются колонии и в бассейне р. Сок.

Для р. Большой Кинель характерна низкая плотность заселения русла и малая доля сеголеток и годовиков по сравнению с оптимальной, что свидетельствует о наличии неблагоприятных факторов, действующих на эту группировку.

Сокская и Кинельская группировка менее устойчивы к неблагоприятным воздействиям, так как здесь почти нет поселений на пойменных водоемах, и любое резкое воздействие на русловые колонии может привести к пагубным последствиям для бобра. Пространственная и демографическая структура колоний бобра на реках Сок и Большой Кинель более уязвимы по сравнению с самарской группировкой, так как численность их ниже, а территория, на которой сосредоточено большинство поселений - Сокский, Шиповский заказники и прилежащие участки русла, весьма ограничена.

В поймах рек Сок и Большой Кинель высокий уровень косвенной антропогенной нагрузки, связанный с интенсивной хозяйственной деятельностью в этих районах. Хотя это и не оказывает заметного непосредственного влияния на поселения бобра, но снижает устойчивость группировок к неблагоприятным внешним воздействиям, уменьшая количество пригодных водоемов и участков русла, ограничивая возможности развития оптимальной пространственной структуры.

Наличие больших нейтральных участков определяется не только внутривидовыми отношениями, а, в большей мере, качеством биотопов, которое в условиях Самарской области зачастую определяется степенью антропогенного воздействия на территорию: самые большие расстояния между поселениями бобра на реках Самара (11500 м) и Большой Кинель (42500) характерны для участков русла с высокой антропогенной нагрузкой от 0,4 до 1,9 баллов, и неблагоприятным гидрорежимом от 0,5 до 2,5 баллов. Для этих же участков характерна самая низкая плотность заселения 0,1 - 0,4 бобра/км русла.

Видовой состав прибрежных древостоев во многом определяет рацион зверя. На реках основная порода, потребляемая бобрами - ива. На озерах поймы р. Самары и на территории Воронежского заповедника видовое разнообразие древостоев существенно выше, соответственно расширяется спектр потребляемых кормов. Снижается доля ивы и возрастает потребление других пород.

Таким образом, рацион поедаемых бобрами древесных кормов обусловлен не только физиологическими потребностями, но, в большей мере, преобладающими лесообразующими породами.

При изучении рациона потребляемых древесных кормов по диаметру установлено, что основной объем потребленных бобрами кормов составляет древесная растительность с диаметром до 12 см, на реках доля таких кормов выше (81,7%), чем на озерах (50,7%), такое различие обусловлено тем, что на озерах преобладают деревья старших возрастных групп. Предпочтительное использование бобром деревьев малого диаметра описано и в других регионах (Дьяков, 1975; Волох и др., 1987; Kindshy, 1985). В ВГБЗ основную массу потребленных кормов, в отличие от самарских группировок, составляют деревья от 12,1 до 30 см, их доля составляет 64,7% от потребленного объема, различия определяются структурой прибрежных древостоев. Деревья с диаметром стволов более 30 см в самарских группировках и в ВГБЗ используются редко: от 2,3% до 9,2%.

При изучении отношения потребления к изъятию установлено, что древесная растительность диаметром до 6 см потребляется полностью. С увеличением диаметра, доля потребленных кормов от изъятого объема уменьшается, и составляет для деревьев с диаметром более 12 см, от 69% до 100% на реках и от 7% до 38% на озерах.

Средняя доля потребления от изъятия в УКЕ по всем использованным кормам составляет на озерах 43%, на р. Самаре - 94%. Это различие обусловлено тем, что на реках, в местах поселений бобра чаще, чем на озерах доминирует древесно-кустарниковая растительность с диаметром ствола до 6 см, потребляемая практически полностью.

При оценке общего изъятия в озерных и речных поселениях установлено, что во все сезоны на озерах изъятие существенно выше, одним бобром в среднем изымается 146 УКЕ, на реке - 68,6 УКЕ.

Таким образом, если учесть, что средняя величина поселения на озерах - 2,3, на русле р. Самары 2,8 бобра, можно рассчитать, что на озерах одним бобром изымается в два с лишним раза, а средней семьей в 1,7 раза больший объем древесной растительности чем на русле реки, что составляет за сезоны исследований 335,8 УКЕ на озере и 192,1 УКЕ на реке. Следовательно, влияние озерных поселений на прибрежные древостои существенно выше, чем речных.

Кормовые условия на реках и пойменных озерах Самарской области в целом более благоприятные, чем в Воронежском заповеднике. Косвенным доказательством хорошей обеспеченности кормами бобров в Самарской области служит малая протяженность семейных участков, тогда как при недостатке или истощении кормовых запасов размеры участков, занимаемых бобрами, увеличиваются (Бородина, 1960; Тюрнин, 1980; Каньшиев, 1981.). Д. Д. Ставровским (1983) для Березинского заповедника, Н. П. Дворниковой (1983) для Ильменского заповедника приведены данные о смене бобрами мест поселений из-за истощения древесных кормов на территории семейного участка.

Несмотря на то, что некоторые поселения существуют на одном месте более 20 лет, в группировках бобра на территории Самарской области в 1994 -

1996 годах не наблюдались случаи, когда звери меняли местообитания из-за недостатка кормов.

Общий объем древесных кормов, изъятых за один год бобрами одного поселения, не превышал в большинстве случаев 3% от общего запаса древесной растительности на территории поселения. Кроме того, молодые ивняки, пре-имущественно используемые бобрами на территории Самарской области, обладают способностью к быстрому восстановлению. Существенных изменений общего запаса древесных кормов на территории ранее описанных поселений Самарской области, за 1994 - 1996 годы не произошло.

Таким образом, кормовые условия не могут являться решающим фактором в формировании демографической и пространственной структуры группировок бобра в Самарской области. Объем изъятых бобрами кормов чаще всего существенно ниже прироста и не оказывает решающего воздействия на прибрежные фитоценозы.

Случаев полного уничтожения прибрежных древостоев, остепнения берегов под влиянием кормодобывающей деятельности бобра, описанных для других регионов в Самарской области не наблюдалось.

Негативное влияние на колонии бобра оказывают колебания уровня воды, вызванные работой ГЭС. Особенно чувствительны бобры к его перепадам в зимний период и в мае-июне, так как с апреля по июнь в семьях появляются сеголетки и затопление нор может привести к их гибели (Дьяков, 1975; Волох, 1980; Евтушевский, 1989).

На реках Самара и Большой Кинель плотность заселения биотопов самая низкая на участках, находящихся под воздействием подпора Саратовской ГЭС. Это связано с тем, что бобры избегают водоемов с нестабильным гидрорежимом. На этих участках высокая смертность животных в результате перепадов уровня воды в зимпее время и высокий отход молодняка из-за перепадов уровня воды после окончания весеннего половодья. Низкий процент сеголеток в Волжском районе в 1994 году (21,7%) обусловлен, на наш взгляд, гибелью молодняка в результате второго пика половодья в мае - июне, вызванного подпором Сара-

товской ГЭС. В 1995, 1996 годах, когда гидрорежим р. Самары характеризовался как маловодный, перепад уровня воды уменьшился, численность бобров на этом участке увеличилась, прослеживается тенденция увеличения доли сеголеток - 29,2%, 30,8%.

Таким образом, для колоний на участках рек с нарушенным гидрорежимом характерна очень низкая плотность заселения биотопов и нестабильная возрастная структура.

Одной из важных составляющих антропогенного воздействия является браконьерский промысел бобра. В Самарской области более высокая плотность заселения бобрами территории заказников по сравнению с неохраняемыми территориями. Особенно заметны различия плотности заселения охраняемого и неохраняемого русла р. Большой Кинель. Рост численности на р. Сок в 1996 году произошел за счет образования новых поселений на территории заказника, на неохраняемом участке русла численность бобров напротив незначительно снизилась. Кроме того, на неохраняемых участках рек Сок и Большой Кинель в 1994 и 1996 годах средняя величина поселения достоверно ниже, чем на охраняемой территории.

В ВГБЗ в 1991 - 1994 годах также происходило нехарактерное для многолетней динамики снижение численности бобра на границах заповедника и неохраняемых участках вблизи населенных пунктов, при высокой плотности заселения биотопов в центральной части заповедника (Летопись природы ВГБЗ). Аналогичные различия в плотности заселения охраняемых и неохраняемых участков отмечаются и в других регионах (Бондарев, 1975; Панов, 1982; Толкачев. 1989).

Загрязнение вод может являться фактором, отрицательно влияющим на популяцию бобра. Высокое загрязнение вод отмечено на р. Большой Кинель ниже г. Отрадного. В 1993 году концентрация нефтепродуктов здесь достигала 21 ПДК. Для этого же участка характерно высокое загрязнение воды фенолами - до 44 ПДК, соединениями меди - до 26 ПДК Некоторые из загрязняющих

веществ, например нефть, опасны прежде всего как поверхностно активные вешества.

Именно на этом участке реки максимальное расстояние между соседними поселениями бобров - 42 500 м. хотя здесь достаточно мест, пригодных для заселения по всем параметрам, кроме сильного загрязнения вод.

Здесь же минимальная плотность заселения биотопов: на 100 км русла реки ниже г. Отрадного приходится лишь 8 поселений бобра, 7 из которых в 1996 году представлены одиночками, выше г. Отрадного на 76 км русла обитало 29 - 37 поселений.

Высокая мобильность семей на данном участке реки вызвана антропогенными воздействиями, так как прочие биотические и абиотические условия оптимальны для жизни зверя. На р. Большой Кинель выше г. Отрадного и на других водоемах мобильность семей достоверно ниже.

Наиболее высокая плотность заселения на пойменных водоемах, где низкий уровень антропогенной нагрузки, качество биотопов - 3,8 балла, благоприятный гидрорежим - 3,4 балла. Плотность бобров на руслах рек ниже, чем на озерах, при этом обнаружены существенные различия плотности заселения как между разными реками, так и между участками одной реки, в зависимости от уровня антропогенных воздействий.

Больший процент семей с длительным сроком существования на озерах, по сравнению с речными поселениями в пойме р. Самары также свидетельствует о более благоприятных условиях на озерах.

Очень низкая плотность (0,1 - 0,4 бобра на километр русла) на участках рек с сильным антропогенным давлением, где качество биотопов по общей нагрузке колеблется от 0,4 до 1,9 баллов. Для этих же участков характерна самая высокая мобильность поселений.

Сравнивая соотношение возрастных групп в колониях Самарской области, можно заметить, что на реках и отдельных участках рек с высоким уровнем антропогенной нагрузки низкая и нестабильная численность сеголеток, что го-

ворит об уменьшении выживаемости молодняка, либо о снижении плодовитости самок

О состоянии популяции можно судить по количественному и возрастному составу поселений. Средняя величина поселения на неохраняемом русле р. Большой Кинель и р. Сок ниже, чем на охраняемых участках и ниже показателя, приводимого для устойчивых популяций.

Анализируя пространственную и демографическую структуру группировок, можно заметить, что для водоемов с высоким уровнем антропогенной нагрузки характерны низкая плотность заселения, высокая мобильность поселений, низкая доля зверей младших возрастных групп, число бобров в поселении ниже, а доля одиночных бобров выше оптимального для популяции уровня.

Таким образом, пространственная структура колоний и численность бобра на территории заповедников, где условия благоприятны и высокая плотность заселения биотопов, определяется в значительной степени внутрипопуляционными механизмами, а в неблагоприятных условиях - внешними факторами. На территориях с высоким уровнем антропогенной нагрузки решающее значение имеют воздействия человека на популяцию. Численность бобров снижается в результате деятельности человека до того, как происходит истощение древесных кормов и включаются внутрипопуляционные механизмы регуляции численности.

Выводы

- 1. Бобры, реакклиматизированные в бассейнах рек Самара и Сок, успешно расселились по водоемам области, сформировали устойчивые и жизнеспособные группировки с разветвленной пространственной структурой. Скорость расселения бобра по рекам Самаре и Волге составляла в 1962 1979 годах 16 км в год.
- 2. Плотность заселения биотопов на озёрах поймы р. Самары более чем в два раза превосходит плотность заселения русла реки. Это различие обусловле-

но более благоприятным гидрорежимом, кормовыми условиями и низким уровнем антропогенных воздействий на замкнутых водоемах.

- 3. Трофическая база биотопов не является фактором, лимитирующим развитие популяции бобра в Самарской области. Изъятие бобрами древесных кормов чаще всего существенно ниже годового прироста и, в большинстве случаев, не превышает 3% от общего запаса древесных кормов, поэтому кормодобывающая деятельность бобра не оказывает решающего воздействия на прибрежные древостои и не может быть причиной остепнения берегов.
- 4. Бобр проявляет большую пластичность в спектре потребляемых растений. На первом месте среди предпочитаемых бобром древесных кормов стоит осина, далее следуют ива и различные виды тополей. Однако основной объем древесных кормов, потребляемых бобром на территории Самарской области, составляют различные виды ив, доминирующие в местах поселений.
- 5. В русловых и озерных поселениях наиболее часто в питании бобра используется древесно кустарниковая растительность с диаметром ствола не превышающим 12 см, кроме того, процент ее утилизации выше, чем деревьев больших диаметров.
- 6. Общее изъятие древесной растительности одним бобром на озерных поселениях более, чем в два раза превосходит изъятие на русле реки. Это обусловлено структурой прибрежных древостоев: на озерных поселениях доминируют деревья большего диаметра доля потребления которых от общего изъятия ниже, чем для растительности малого диаметра.
- 7. Основные факторы, лимитирующие расселение и численность бобров в Самарской области можно выстроить в следующем порядке: антропогенные нарушения гидрорежима. влияние прямого преследования, загрязнение вод, фактор беспокойства
- 8. На участках рек, находящихся под влиянием подпора Саратовской ГЭС, плотность заселения биотопов ниже, чем на всех обследованных замкнутых водоемах и участках русла.

Работы, опубликованные по теме диссертации:

Броздняков В. В. Экология бобра в Красносамарском лесничестве // Биота Урала. Екатеринбург, 1994. С. 10.

Броздняков В. В. Результаты реакклиматизации бобра в Самарской области // Проблемы общей и прикладной экологии: Материалы молодеж. конф. Екатеринбург, 1996. С. 27 - 28.

Броздняков В. В. Некоторые особенности экологии бобра в условиях высокой антропогенной нагрузки // Проблемы изучения биоразнообразия на популяционном и экосистемном уровне: Материалы конф. молодых учен.- экологов Урал. региона. Екатеринбург, 1997. С. 35 - 44.

Броздняков В. В., Скобелев А. А., Шестун К. В. Динамика популяции бобра Самарской области // Экология. 1997. N 4. C. 278 - 283.

5