БЕЛЬСКИЙ ЕВГЕНИЙ АНАТОЛЬЕВИЧ

На правах рукописи УДК 574:504.74.054:598.8

РАЗМНОЖЕНИЕ И РАННИЙ ОНТОГЕНЕЗ ВОРОБЬИНЫХ ПТИЦ ПРИ ТЕХНОГЕННОМ ЗАГРЯЗНЕНИИ СРЕДЫ ОБИТАНИЯ

03.00.16 - экология

Автореферат диссертации на соискание ученой степени кандидата биологических наук

Работа выполнена в лаборатории экодиагностики и нормирования Института экологии растений и животных Уральского отделения РАН

Научный руководитель – доктор биологических наук,

старший научный сотрудник

Безель В.С.

Официальные оппоненты: доктор биологических наук,

старший научный сотрудник

Рябицев В.К.

кандидат биологических наук,

доцент

Брауде М.И.

Ведущее учреждение – Институт проблем экологии и эволюции

РАН им. А.Н. Северцова

Защита диссертации состоится " " 1996 г. в " час. на заседании диссертационного совета Д 002.05.01 в Институте экологии растений и животных УрО РАН (620144, г. Екатеринбург, ул. 8 Марта, 202).

С диссертацией можно ознакомиться в библиотеке Института экологии растений и животных УрО РАН, г. Екатеринбург, ул. 8 Марта, 202.

Автореферат разослан " " 1996 г.

Ученый секретарь диссертационного совета кандидат биологических наук

М.Г. Нифонтова

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность исследования мы видим в следующем:

- 1) Техногенная нагрузка приводит у птиц не только к нарушению физиологических процессов, но и к изменениям важнейших популяционных характеристик. В связи с этим локальные группировки птиц могут быть рассмотрены в качестве модельного объекта, позволяющего изучить общие закономерности ответа систем популяционного уровня на экстремальные условия среды обитания.
- 2) Для целей экологического мониторинга необходима разработка системы показателей, позволяющих установить зависимость той или иной реакции биоты от величины нагрузки, удобных в методическом отношении и вносящих наименьшее возмущение в жизнедеятельность животных. Несомненным приоритетом в этом отношении обладают репродуктивные показатели. Возможность анализа у птиц отдельных этапов онтогенеза (особенно гнездового периода) позволяет считать локальные группировки птиц интереснейшим объектом исследования.
- 3) Экологическое нормирование антропогенных нагрузок требует использования высокозначимых параметров, позволяющих выделить объективную норму, отклонение от которой было бы неприемлемо. Демографические (эффективность размножения) и организменные показатели (качество яиц, состояние птенцов) позволяют определить достаточно объективный порог, за которым наблюдается явная патология исследуемая группировка птиц не воспроизводит себя, либо энергетические ресурсы яиц и слетков не обеспечивают необходимую жизнеспособность, соответственно, вылупляющихся птенцов и молодых птиц.

<u>Цели и задачи работы.</u> Автором выносится на защиту следующее:

- 1. Воздействие токсикантов на птиц приводит к изменению всего процесса раннего онтогенеза, от формирования яиц до вылета птенцов из гнезда. На популяционном уровне токсические эффекты проявляются в отклонении важнейших демографических показателей, интегрально отражающих как поражение репродуктивной функции взрослых птиц, так и нарушения в протекании онтогенеза нового поколения. Разные стадии онтогенеза и демографические показатели обладают разной чувствительностью к воздействию токсикантов.
- 2. Вследствие неодинаковой степени нарушенности процессов воспроизводства птиц в местообитаниях, подверженных разным уровням техногенной нагрузки, отдельные пространственные группировки животных вносят разный вклад в поддержание численности видовых популя-

ций. Локальные группировки, испытывающие достаточно высокую токсическую нагрузку, не воспроизводят себя и, по-видимому, существуют за счет притока иммигрантов.

Эти положения сформулированы на основе решения следующих задач:

- 1. Выбор полигона исследования, в пределах которого наблюдается градиент техногенного загрязнения; выбор объектов исследования;
- 2. Методическое обоснование и практическое определение показателей токсической нагрузки на группировки птиц в природе;
- 3. Определение уровней тяжелых металлов (свинец, кадмий, медь, цинк) как приоритетных экотоксикантов и в то же время маркеров техногенного загрязнения в корме и организме птиц;
- 4. Выявление роли экологических факторов в формировании токсической нагрузки у разных видов птиц;
- 5. Изучение влияния токсической нагрузки на онтогенетические (организменные) характеристики птиц: размеры яиц, показатели роста и развития птенцов;
- 6. Выявление зависимости основных демографических показателей (плодовитость, успешность гнездования и др.) воробьиных от уровня токсической нарузки.

Научная новизна выполненной работы заключается в следующем. Охарактеризована величина токсической нагрузки на лесных воробьиных птиц, обитающих в окрестностях медеплавильного завода на Среднем Урале. Показана роль экологических факторов в формировании токсической нагрузки у различных видов (большая синица, мухоловка-пеструшка). Установлено изменение ряда морфологических показателей у птиц-дуплогнездников в градиенте техногенного загрязнения среды обитания. Выявлена зависимость демографических показателей локальных группировок птиц от уровня токсической нагрузки.

<u>Практическое значение.</u> Полученные зависимости репродуктивных показателей от уровня токсической нагрузки могут быть использованы для диагностики состояния биоты и прогнозирования его изменений при экологической экспертизе действующих и проектируемых промышленных объектов, а в теоретическом плане - при изучении процессов адаптации животных к экстремальным условиям среды обитания. Оценки уровня нагрузки, при котором группировки птиц не воспроизводят себя, могут использоваться при разработке экологических нормативов антропогенного воздействия на биогеоценозы. Наиболее чувствительные виды и показатели могут применяться в экологическом мониторинге.

Публикация результатов и апробация работы. По материалам дис-

сертации опубликовано 13 печатных работ. Результаты исследований докладывались на международных конференциях "Устойчивое развитие: загрязнение окружающей среды и экологическая безопасность" (Днепропетровск, 1995) и "Загрязнение окружающей среды (ICEP'95)" (С.-Петербург, 1995), на конференции молодых ученых в ИЭРиЖ (1995) и на открытых семинарах лаборатории экодиагностики и нормирования ИЭРиЖ.

Структура и объем диссертации. Диссертация состоит из введения, семи глав, заключения, выводов и списка литературы. Общий объем составляет 190 страниц; диссертация содержит 17 рисунков и 35 таблиц. Список литературы содержит 165 наименований, из них 105 на иностранных языках.

СОДЕРЖАНИЕ РАБОТЫ

ГЛАВА 1. ФИЗИКО-ГЕОГРАФИЧЕСКИЕ ОСОБЕННОСТИ РАЙОНА И ХАРАКТЕРИСТИКА ОБЪЕКТОВ ИССЛЕДОВАНИЙ.

Работа проведена в окрестностях Среднеуральского медеплавильного завода, расположенного близ г. Ревда Свердловской области. Основные загрязнители, содержащиеся в выбросах этого предприятия (тыс. т/год): SO_2 (134,1), HF (1,0) и тяжелые металлы: медь (2,6), цинк (1,8), мышьяк (0,6) и свинец (0,6).

Решение поставленных задач потребовало параллельного изучения гнездовой биологии птиц на участках с разной техногенной нагрузкой, в то же время максимально сходных по биотопическим и погодно-климатическим условиям. Пробные площадки для изучения размножения дуплогнездников были заложены к западу от завода в направлении, противоположном господствующим ветрам, что обеспечило меньшую протяженность полигона исследований. Три площадки расположены в зоне сильного загрязнения (импактная зона, 1-2,5 км от завода), одна – в зоне умеренного загрязнения (буферная, 4,5 км), одна - на контрольном участке (фоновая, 20 км). Все участки характеризуются сходным коренным типом леса: это пихто-ельник с примесью сосны и лиственных пород (в основном осина, береза). В импактной зоне в результате усыхания хвойных пород пихто-ельник разрежен и местами вторично замещен ивой, осиной и березой. Рекреационная нагрузка на всех участках в гнездовой период минимальна.

Наблюдения за размножением открытогнездящихся видов проводили в открытых местообитаниях в импактной (1 км от завода) и фоновой

(14 км) зонах.

В главе приведены основные черты биологии объектов исследования.

ГЛАВА 2. МАТЕРИАЛ И МЕТОДИКА.

Тяжелые металлы: свинец, кадмий, медь и цинк мы рассматриваем в качестве маркеров многокомпонентного промышленного загрязнения. Суммарную токсическую нагрузку на конкретные биогеоценозы определяли как превышение накопленных в снеге за зиму уровней тяжелых металлов над фоновым уровнем:

$$S = \frac{1}{n} \sum_{i=1}^{n} \frac{C_{ij}}{C_{i\phi}}$$

где n - количество основных токсикантов, входящих в состав выбросов, C_{ij} — концентрация i-го элемента в снеге в зоне j, $C_{i\varphi}$ - концентрация того же элемента в снеге фоновой зоны. Пробы снега для анализа (по 25 в каждой зоне) отобраны в конце зимы 1990 г.

Материал по дуплогнездникам: мухоловке-пеструшке (Ficedula hypoleuca), большой синице (Parus major), московке (Parus ater) собирали в мае-июле 1989-93 гг., по открытогнездящимся (доминировала чечевица Carpodacus erythrinus) - в мае-июле 1989-90 гг.

На каждой площадке было вывешено по 100 синичников и до 100 дуплянок. Общее количество искусственных гнездовий составило 770, из них в импактной зоне - 430, в буферной - 140, в контроле - 200. При регулярной проверке гнезд отмечали размер кладки, количество вылупившихся птенцов и птенцов на стадии вылета из гнезда. Под наблюдением находились 163 кладки мухоловки-пеструшки, 54 кладки большой синицы, 43 кладки московки, 39 кладок чечевицы. Вторые кладки синиц в анализ не включали.

Яйца птиц фотографировали на специальной подставке с масштабной линейкой. По негативам с помощью фотоувеличителя определяли линейные размеры яиц с точностью + 0,05 мм. Измерено 887 яиц мухоловки-пеструшки, 367 яиц большой синицы, 261 яйцо московки. Объем яиц вычисляли по формуле:

(2)
$$V = 0.51 * L * B^2$$
,

где L - длина, мм, B - наибольший диаметр, мм (Мянд, 1988). Толщина скорлупы яиц (n=82) большой синицы измерена на тупом полюсе яйца микрометром с точностью + 2,5 мкм.

Содержание тяжелых металлов (Pb, Cd, Cu, Zn) определено мето-

дом атомно-абсорбционной спектрофотометрии в пробах: содержимого желудочно-кишечного тракта (жкт) и фекалий мухоловки-пеструшки - 44, большой синицы - 49; скорлупы яиц большой синицы - 82; костной ткани птенцов мухоловки-пеструшки - 42, большой синицы - 26, московки - 19, горихвостки - 7, чечевицы - 13 образцов.

Накануне вылета из гнезда (как правило, вечером) птенцов дуплогнездников взвешивали на чашечных весах с точностью + 0,05 г. У птенцов мухоловки-пеструшки и большой синицы также измеряли длину крыла с точностью + 0,25 мм, длину хвоста, цевки, шестого первостепенного махового и его опахала с точностью + 0,05 мм. Возраст птенцов к моменту замеров составлял: у мухоловки-пеструшки - 14 суток, московки - 15 суток, большой синицы - 16 суток. Для сравнения по зонам нагрузки использовали средние и большие выводки (у большой синицы 8-12 птенцов в гнезде, московки 5-10, мухоловки-пеструшки - 4-7). Измерено 390 птенцов мухоловки-пеструшки, 161 птенец большой синицы, 166 птенцов московки.

ГЛАВА З. УРОВНИ ТОКСИЧЕСКОЙ НАГРУЗКИ В ОКРЕСТНОСТЯХ МЕДЕПЛАВИЛЬНОГО ЗАВОДА.

Общая техногенная нагрузка на биогеоценозы, определяемая по уровню загрязнения снежного покрова, в импактной зоне превысила фоновую в 4,7 раза, а в буферной в 1,6 раза. Но этот показатель не отражает в полной мере прямое токсическое воздействие на птиц, так как не учитывает важнейшие экологические характеристики изучаемых видов, прежде всего структуру рационов. В качестве меры токсического воздействия на птиц мы используем содержание металлов (Pb, Cu, Cd, Zn) в жкт и фекалиях птенцов, рассчитывая величину нагрузки по формуле (1). За $C_{i\varphi}$ приняты уровни металлов в фекалиях и содержимом жкт большой синицы на фоновой территории, поскольку этот вид испытывает наименьшую нагрузку.

Показатель токсической нагрузки в фоновой, буферной и импактной зонах составил у большой синицы соответственно 1,00, 1,68 и 3,81 отн. ед.; у мухоловки-пеструшки 2,18, 5,76 и 9,97 отн. ед. Во всех зонах проявляется видоспецифичность уровней поступления токсикантов в организм животных. При совместном обитании в одном биотопе содержание тяжелых металлов в рационе мухоловки-пеструшки в 1,4-3 раза больше, чем у большой синицы. Несомненно, это обусловлено тонкими различиями в специфике рациона и местах сбора корма.

Содержание всех тяжелых металлов, за исключением кадмия, в скелете птенцов в зонах загрязнения значительно больше фонового уровня. Для большой синицы отмечена сильная положительная связь между содержанием металлов в жкт и скелете: коэффициент линейной корреляции для свинца 0,74, для меди 0,56 (n=25). Отмечено принципиальное отличие накопления в организме чужеродных металлов (Pb) и физиологически важных (Cu, Zn), уровни которых в организме контролируются мощными регуляторными системами. Это выражается в меньшей амплитуде изменения уровней меди и цинка в градиенте нагрузки (в 1,2 - 1,4 раза) по сравнению со свинцом (до 3 раз у большой синицы и чечевицы).

Токсическая нагрузка в импактной зоне способна приводить к гибели птенцов в гнездах, например, у горихвостки. Высокие концентрации тяжелых металлов в их скелете (Рb до 130 мкг/г воздушно-сухой массы, Сu до 58 мкг/г) свидетельствуют об интоксикации организма.

Рост токсической нагрузки на размножающихся самок приводит к увеличению уровней металлов в скорлупе яиц. Так, в скорлупе яиц большой синицы из импактной зоны уровни свинца и меди превышают фоновые соответственно в 1,2 и 2 раза.

ГЛАВА 5. РЕПРОДУКТИВНЫЕ ПОКАЗАТЕЛИ ОРГАНИЗМЕННОГО УРОВНЯ.

Оморфологические показатели. У всех дуплогнездников установлено достоверное уменьшение среднего объема яиц в импактной зоне по сравнению с фоновой (табл. 1). Однако если у большой синицы отмечена четкая зависимость величины яиц от уровня загрязнения территории, менее выраженная у московки, то у мухоловки-пеструшки эта зависимость носит нелинейный характер. Несмотря на то, что максимальные в среднем яйца пеструшки отмечены в буферной зоне, мода распределения объема яиц на контрольном участке, расположенная в классовом интервале 1600-1700 мм³, больше мод выборок из импактной и буферной зон, лежащих в интервале 1500-1600 мм³.

Длина и диаметр яиц изученных видов обнаруживают аналогичный объему характер изменения в градиенте нагрузки. Толщина скорлупы яиц большой синицы не различалась статистически в импактной зоне и в контроле, соответственно 83+1 мкм (n=60) и 82+1 мкм (n=22).

Сравнение средних значений для выборок из разных зон не обес-

Таблица 1 Объем яиц и масса птенцов перед вылетом из гнезда у дуплогнездников по зонам нагрузки (в скобках - объем выборки).

Вид	Зоны техногенной нагрузки					
Бид	Импактная	Буферная	Фоновая			
Объем яиц, мм ³						
Мухоловка-	$1563,4 \pm 15,6*$	$1655,9 \pm 14,6*$	$1612,0 \pm 6,0$			
пеструшка	(88)	(109)	(682)			
Большая	$1595,9 \pm 10,3*$	$1646,7 \pm 10,7*$	$1745,4 \pm 8,6$			
синица	(228)	(96)	(112)			
3.6	$1011,2 \pm 8,9*$	$1015,1 \pm 9,2*$	$1057,0 \pm 8,3$			
Московка	(85)	(102)	(74)			
Масса, г						
Мухоловка-	$13,35 \pm 0,45$	$13,92 \pm 0,11$	$13,95 \pm 0,07$			
пеструшка	(16)	(63)	(311)			
Большая	$16,93 \pm 0,18**$	$18,27 \pm 0,21$	$18,52 \pm 0,18$			
синица	(89)	(18)	(54)			
Μ	$9,25 \pm 0,13**$	$9,65 \pm 0,09**$	$10,16 \pm 0,09$			
Московка	(53)	(85)	(46)			

^{* -} достоверные отличия (p<0,05) от фонового показателя

печивает полного представления об эффектах токсического действия на популяционном уровне. Дополнительную информацию дает анализ распределений снимаемых показателей, в частности, ооморфологических, для выявления доли неполноценных экземпляров (мелких яиц).

Анализ распределений объема яиц большой синицы в градиенте загрязнения показал, что доля мелких яиц увеличивается с 3,6 % в контроле до 35,4 % в буферной и 48,7 % в импактной зонах, у московки соответственно 5,4 %, 23,5 % и 16,5 %. У мухоловки-пеструшки различия между зонами нагрузки недостоверны: в контроле 4,7 %, в буферной зоне 1,8 %, в импактной 8,0 %.

Показатели роста и развития птенцов (масса, линейные размеры) характеризуют шансы молодых на выживание в период перехода к самостоятельной жизни.

Масса птенцов накануне вылета из гнезда у дуплогнездников

^{** -} p<0,001

уменьшается при увеличении токсической нагрузки (табл. 1). Недостоверное снижение массы птенцов мухоловки-пеструшки в импактной зоне может быть связано, во-первых, с меньшими размерами выводков здесь, что приводит к увеличению количества корма на каждого птенца. Во-вторых, у пеструшки в импактной зоне повышена птенцовая смертность за счет истощенных и отставших в развитии птенцов. Они не включаются в выборку и не влияют на средние характеристики птенцов в импактной зоне. Это позволяет сделать вывод о том, что токсическое воздействие на онтогенез потомства проявляется и у мухоловки-пеструшки, но на более ранних стадиях по сравнению с синицами.

Нами был предпринят анализ распределений массы слетков дуплогнездников для определения доли неполноценных особей. Неполноценность мы определяли по массе птенцов, достигших возраста слетка, но не сумевших вылететь из гнезда. Такие птенцы у мухоловки-пеструшки встречаются в классовых интервалах 7,5 - 12,5 г, а у большой синицы - 12,0 - 15,6 г. Следовательно, слетки со значениями массы из этих интервалов принадлежат к "группе риска" с меньшими шансами на выживание. Доля таких птенцов у мухоловки-пеструшки составила в импактной зоне 31,3 % при 10,6 % в контроле, а у большой синицы, соответственно, 21,3 % и 7,4 %.

Масса слетков находится в обратной зависимости от содержания металлов в скелете. У большой синицы коэффициент линейной корреляции для свинца составил - 0,61, меди - 0,65, цинка - 0,82, кадмия - 0,35 (n=29). Масса птенцов мухоловки-пеструшки коррелирует с концентрацией в скелете меди: r=-0,49 (n=41).

Мы отметили достоверное (p<0,05) уменьшение длины крыла, маховых перьев, хвоста и цевки птенцов мухоловки-пеструшки и большой синицы в импактной зоне. Так, средняя длина крыла слетков мухоловки-пеструшки составила в импактной зоне $53,8\pm0,6$ мм при $55,3\pm0,2$ мм в контроле, у большой синицы соответственно $56,6\pm0,3$ мм и $58,6\pm0,4$. Средняя длина хвоста слетков пеструшки у завода равна $16,1\pm0,5$ мм и $18,0\pm0,2$ мм в контроле, у большой синицы $29,2\pm0,3$ мм и $32,0\pm0,5$ мм. Размеры слетков находятся в обратной зависимости от содержания металлов в скелете: у мухоловки-пеструшки прежде всего - меди и кадмия, а у большой синицы - цинка и в меньшей степени - меди и свинца.

Таким образом, техногенное загрязнение способно приводить к снижению массы слетков и замедлению их развития. Одна из причин этого - интоксикация организма. Учитывая снижение запасов энергоре-

сурсов и локомоторных качеств птенцов дуплогнездников, следует полагать, что слетки из гнезд в зоне сильного загрязнения имеют меньше шансов на выживание в пререпродуктивный период, чем на фоновой территории.

ГЛАВА 6. ДЕМОГРАФИЧЕСКИЕ ПОКАЗАТЕЛИ ЛОКАЛЬНЫХ ГРУППИРОВОК.

Доля инкубированных кладок — это относительное количество гнезд, в которых самки приступили к насиживанию. Разность между 100 % и этим показателем характеризует долю брошенных кладок. Наиболее выражено снижение этого показателя с ростом токсической нагрузки у обоих видов рода Parus (табл. 2).

<u>Размер кладки</u> достоверно снижается в градиенте нагрузки лишь у мухоловки-пеструшки. Снижение плодовитости у московки в импактной зоне достоверно лишь при сравнении с буферной (табл. 2).

<u>Успешность инкубации</u> в импактной зоне лишь у мухоловки-пеструшки достоверно отличается от фоновой: почти в 1,5 раза.

<u>Количество вылупившихся птенцов на гнездо</u> в наибольшей степени снижается у мухоловки-пеструшки. Уменьшение исходного размера выводка у других видов имеет характер тенденции и сильнее проявляется у московки, слабее - у чечевицы (табл. 2).

<u>Успешность выкармливания</u> достоверно уменьшается в зоне максимального загрязнения у мухоловки-пеструшки и большой синицы: до 1,4 раза, несмотря на уменьшение исходного размера выводка (у мухоловки-пеструшки в 2 раза). Вероятно, этот эффект объясняется во многом нарушением физиологических процессов у птенцов вследствие интоксикации соединениями тяжелых металлов и фтора, что выражалось в дефектах скелета у птенцов в импактной зоне.

<u>Успешность гнездования</u> у всех видов достоверно снижалась в импактной зоне, составив у мухоловки-пеструшки 39.3 ± 4.7 % (df=106) при 79.7 ± 1.8 % (507) в контроле, у большой синицы соответственно 56.6 ± 3.0 % (271) и 84.0 ± 4.2 % (74), у московки 65.2 ± 5.1 % (88) и 82.2 ± 4.0 % (89), у чечевицы 28.4 ± 5.5 % (66) и 55.9 ± 6.5 % (58).

<u>Количество слетков на гнездо</u> (включая неуспешные) закономерно уменьшается у всех видов птиц в градиенте нагрузки (табл. 2), наиболее резко у мухоловки-пеструшки: в импактной зоне в 3,2 раза по сравнению с фоновой.

Показатель количества слетков на гнездо определяет способность

той или иной группировки птиц воспроизводить себя либо вносить полноценный вклад в поддержание численности видовой популяции. У мухоловки-пеструшки и чечевицы количество слетков на гнездо явно недостаточно для пополнения их группировок в зоне максимального загрязнения. По существующим оценкам смертности большой синицы (Нумеров, 1987) для стабильности группировки этого вида в средней полосе РосТаблица 2

Основные демографические показатели воробьиных по зонам нагрузки (в скобках - объем выборки).

Вил	Зоны техногенной нагрузки						
Бид	Импактная	Буферная	Фоновая				
Доля (%) инкубированных кладок							
Мухоловка-	76,67 + 7,72*	86,36 + 7,32	93,50 + 2,22				
пеструшка	(30)	(22)	(123)				
Большая	72,00 + 6,35**	76,92 + 11,67*	100,00 + 7,15				
синица	(50)	(13)	(11)				
M	68,75 + 11,59**	100,00 + 5,87	100,00 + 5,87				
Московка	(16)	(14)	(14)				
,	Размер полной кл	падки, яиц/гнездо					
Мухоловка-	4,43 + 0,31*	5,89 + 0,36*	6,59 + 0.09				
пеструшка	(23)	(19)	(107)				
Большая	10,56 + 0,25	10,25 + 0,23	11,00 + 0,37				
синица	(25)	(8)	(10)				
M	7,60 + 0,71	9,14+0,20	9,00+0,34				
Московка	(10)	(14)	(11)				
	4,50 + 0,19	-	4,42+0,19				
Чечевица	(12)	-	(12)				
Количество вылупившихся птенцов/гнездо							
Мухоловка-	2,95 + 0,40*	4,75 + 0,51*	5,86+0,15				
пеструшка	(22)	(16)	(92)				
Большая	8,43 + 0,68	9,33 + 0,51	9,50+0,39				
синица	(21)	(6)	(6)				
Московка	6,63 + 0,83	8,38 + 0,39	8,30 + 0,38				
	(8)	(13)	(10)				
II	3,38 + 0,30	-	3.82 + 0.27				
Чечевица	(8)	-	(17)				

Продолжение табл. 2

количество слетков/гнездо							
Мухоловка-	1,50 + 0,29***	3,89 + 0,57	4,81 + 0,23				
пеструшка	(28)	(19)	(88)				
Большая	4,46 + 0,71***	4,40 + 1,23**	9,00 + 0,45				
синица	(37)	(10)	(7)				
Московка	4,47 + 1,74	7,38 + 0,95	7,18+0,79				
	(15)	(13)	(11)				
Чечевица	1,12 + 0,40*	-	2,33 + 0,47				
	(17)	-	(15)				

^{* -} достоверные отличия (p < 0.05) от фонового уровня

сии (Окский заповедник) необходимо 4,2 слетка на пару. Нами вблизи завода зарегистрировано близкое значение (табл. 2). Однако смертность больших синиц, гнездившихся в зоне максимальной токсической нагрузки, должна быть выше, чем в естественных условиях вследствие интоксикации организма и истощения слетков. Поэтому можно оспаривать способность этой группировки воспроизводить себя.

С целью оценки силы воздействия техногенного загрязнения на демографические показатели мухоловки-пеструшки был проведен <u>однофакторный дисперсионный анализ</u>. Градации действующего фактора соответствовали сильному (импактная зона), умеренному (буферная зона) и фоновому (контроль) уровням загрязнения территории. В качестве повторностей служили данные за отдельные годы.

Анализ показал, что у этого вида доля инкубированных кладок характеризуется значительной случайной дисперсией, которая превышает факториальную. Это связано со значительной межгодовой изменчивостью этого показателя. Наибольший показатель силы влияния отмечен для количества слетков на гнездо: техногенный фактор объясняет 62 % его общего варьирования. Загрязнение территории обуславливает 54 % изменчивости успешности гнездования, 52 % - размера кладки и 47 % - количества вылупившихся птенцов на гнездо. Влияние загрязнения среды на инкубацию яиц и выкармливание птенцов недостоверно: соответственно 27 % и 18 % их общей изменчивости.

Для проверки именно токсической обусловленности изменений репродуктивных параметров в градиенте загрязнения был проведен корреляционный анализ. По данным 1991-1992 г. проанализирована зависимость демографических показателей мухоловки-пеструшки от содержания

^{** -} p < 0.01, *** - p < 0.001

тяжелых металлов в жкт и фекалиях. Для птенцов из одного гнезда определяли среднюю величину токсической нагрузки. Для этих же гнезд имелись данные о величине кладки, количестве вылупившихся и вылетевших птенцов, по которым рассчитывали индивидуальные величины успешности инкубации, выкармливания и гнездования. Анализировали только успешные гнезда.

Для всех показателей отмечается отрицательная связь с уровнями токсической нагрузки. В наибольшей степени это выражено для величины кладки, коэффициент линейной корреляции с содержанием в жкт меди равен -0,716, свинца -0,655. Наиболее тесная корреляция остальных показателей отмечена: для успешности инкубации с уровнями в жкт кадмия (r = -0,568), успешности выкармливания - цинка (r = -0,284), успешности гнездования - кадмия (r = -0,284), успешности гнездования - кадмия (r = -0,284), исвинца (r = -0,284), исвинца (r = -0,284), исвинца (r = -0,284), и свинца (r = -0,284).

ГЛАВА 7. ВАРИАБЕЛЬНОСТЬ РЕПРОДУКТИВНЫХ ПАРАМЕТРОВ.

Мы рассматриваем изменение вариабельности репродуктивных параметров как одно из проявлений токсического действия.

Общая изменчивость величины яиц у большой синицы возрастает с увеличением нагрузки: коэффициент вариации объема составил 4,9 % на контроле, 6,6 % в буферной и 10,0 % в импактной зонах. Вариабельность объема яиц мухоловки-пеструшки изменялась несущественно: от 9,2 до 9,7 %, а у московки — в интервале от 6,7 до 9,2 %. Коэффициент вариации толщины скорлупы яиц большой синицы вырос с 4,0 % на фоновой территории до 10,0 % в импактной зоне.

Изменчивость массы слетков у всех дуплогнездников растет с увеличением токсической нагрузки. Но если коэффициент вариации этого показателя внутри выводков мало меняется во всех зонах (3,6-4,9%), то изменчивость между выводками с ростом нагрузки увеличивается в 1,8-2,4 раза: с 6,8% (контроль) до 12,5% (импактная зона) у мухоловки-пеструшки, с 4,6% до 8,7% у большой синицы и с 3,9% до 9,2% у московки.

Вариабельность демографических параметров у всех изучаемых нами дуплогнездников увеличивается с ростом токсической нагрузки. Коэффициент вариации плодовитости самок мухоловки-пеструшки в импактной зоне (33,8 %) в 2,5 раза больше, чем на фоновой территории (13,6 %), у московки - в 2,4 раза. У большой синицы вариабельность размера кладки в градиенте загрязнения меняется несущественно. Ко-

эффициент вариации исходного размера выводка в импактной зоне превышает фоновый у мухоловки-пеструшки в 2,6, у большой синицы в 3,7, у московки в 2,5 раз. Наибольшее среди всех демографических параметров увеличение изменчивости в градиенте токсической нагрузки наблюдается для количества слетков на размножавшуюся пару. Его коэффициент вариации у мухоловки-пеструшки и московки в импактной зоне превышает фоновый в 2,7, у большой синицы - в 6,5 раз.

ЗАКЛЮЧЕНИЕ

Одной из основных задач работы была оценка репродуктивных потерь по стадиям гнездового цикла. С этой целью мы составили когортную таблицу выживания для раннего онтогенеза мухоловки-пеструшки и большой синицы в разных зонах техногенной нагрузки, выделив четыре стадии гнездового периода: 1) Завершение кладок. Выживание репродуктивного материала на этой стадии характеризует доля инкубированных кладок. 2) Оогенез, эффективность его характеризует размер кладки. Мы определили выживание яйцеклеток для каждой зоны как отношение в процентах среднего размера кладки к максимальному (отмеченному в контроле). 3) Инкубация яиц. Выживание характеризуется успешностью инкубации. 4) Выкармливание птенцов. Долю выживших особей характеризует успешность выкармливания.

В таблице 3 приведен коэффициент смертности (q_x) , характеризующий интенсивность потерь. Он равен отношению количества погибающих в течение стадии особей к количеству доживших до ее начала.

Таблица 3 Интенсивность смертности мухоловки-пеструшки и большой синицы в раннем онтогенезе по зонам нагрузки.

Стадия гнездового	Зоны техногенной нагрузки					
периода	имп.	буф.	фон.	имп.	буф.	фон.
	мухоловка-пеструшка			Большая синица		
Завершение кладки	0,23	0,14	0,07	0,28	0,23	0,00
Оогенез	0,51	0,35	0,27	0,19	0,21	0,15
Инкубация	0,33	0,20	0,11	0,19	0,08	0,08
Выкармливание	0,32	0,06	0,05	0,18	0,34	0,05

Анализ динамики смертности у обоих видов в естественных условиях показывает: небольшая ее величина, обусловленная оставлением самками незаконченных кладок, резко возрастает на стадии оогенеза. Затем интенсивность гибели снижается, с каждой стадией примерно вдвое, и достигает минимума на стадии выкармливания птенцов. Однако в импактной зоне интенсивность смертности в значительной мере выравнивается за счет увеличения потерь на поздних стадиях гнездового периода. Таким образом, с каждой стадией развития увеличивается разрыв между зонами нагрузки в численности выживающей части когорты. До вылета из гнезда у пеструшки в импактной зоне доживает в 3,2 раза меньше птенцов, чем в контроле, а у большой синицы в 2,0 раза. Интенсивность потерь у мухоловки-пеструшки вблизи завода на протяжении всего гнездового периода, кроме первой стадии, примерно вдвое выше, чем у большой синицы. Это находится в соответствии с более высоким уровнем токсической нагрузки, испытываемым мухоловкой.

Анализ чувствительности репродуктивных параметров воробьиных показал возможность их практического использования при экологическом мониторинге. Среди экологических групп более перспективны дуплогнездники, у которых по сравнению с открытогнездящимися видами воздействие естественных факторов (хищничество, погода) в значительной мере ослаблено. На популяционном уровне большую в целом чувствительность по сравнению с другими дуплогнездниками проявляет мухоловка-пеструшка, на организменном - большая синица. Наиболее важен для мониторинга состояния группировок птиц показатель количества слетков на гнездо.

выводы.

- 1. Наиболее адекватной мерой суммарной токсической нагрузки на природные популяции птиц в условиях техногенного загрязнения местообитаний служат концентрации поллютантов в содержимом желудочно-кишечного тракта и в фекалиях. Этот показатель хорошо коррелирует с уровнями загрязнителей в среде обитания и отражает видоспецифичные экологические особенности.
- 2. Воздействие техногенных токсикантов на птиц вызывает нарушение процессов онтогенеза. Это выражается в уменьшении средних размеров и увеличении доли мелких яиц с ростом токсической нагрузки, замедлении роста и развития птенцов, что должно снижать выживаемость слетков

- 3. Увеличение токсической нагрузки приводит к ухудшению основных демографических показателей. Увеличивается доля брошенных кладок, снижаются плодовитость, успешность инкубации яиц и выкармливания птенцов, успешность гнездования, количество слетков на гнездо.
- 4. В условиях техногенного загрязнения смертность потомства дуплогнездников значительно возрастает на поздних стадиях гнездового цикла. Тем не менее, главным источником репродуктивных потерь на нарушенных территориях у мухоловки-пеструшки остаются снижение плодовитости самок, а у большой синицы оставление самками незаконченных кладок, то есть эффекты, связанные с состоянием взрослых птиц.
- 5. Локальные группировки некоторых видов (мухоловки-пеструшки, чечевицы и, вероятно, большой синицы) в условиях высоких токсических нагрузок не воспроизводят себя и, по-видимому, существуют за счет притока иммигрантов.
- 6. С ростом токсической нагрузки увеличивается изменчивость большинства репродуктивных показателей птиц. Это может свидетельствовать о провокационной роли техногенного загрязнения, увеличивающего фенотипическое разнообразие группировок птиц нарушенных территорий.
- 7. Для целей экологического мониторинга целесообразно использование комплекса показателей и комплекса видов. На организменном уровне это объем яиц, масса слетков (большая синица, московка). На популяционном уровне успешность гнездования, количество слетков на гнездо (все дуплогнездники).

Список опубликованных работ по теме диссертации.

- 1. Бельский Е.А., Поленц Э.А. О влиянии промышленного загрязнения на размножение птиц // Проблемы устойчивости биологических систем / Тез. докл. Всесоюз. школы 15-20.10.1990 г. Харьков, 1990. С. 175-176.
- 2. Поленц Э.А., Бельский Е.А. О влиянии техногенного загрязнения на репродуктивные показатели птиц // Очерки по экологической диагностике. Свердловск, 1991. С. 68-74.
- 3. Бельский Е.А., Бабушкина Н.Ф., Степанова З.Л., Поленц Э.А. О размножении мухоловки-пеструшки в условиях техногенного загрязнения // Чтения памяти профессора В.В. Станчинского. Смоленск, 1992. С. 85-88.

- 4. Бельский Е.А., Поленц Э.А. О влиянии загрязнения тяжелыми металлами на некоторые параметры яиц лесных дуплогнездников // Современные проблемы оологии / Мат-лы 1 междунар. совещания 14-18.9.1993 г. Липецк, 1993. С. 44-45.
- 5. Бельский Е.А., Ляхов А.Г., Поленц Э.А. О гнездовой биологии большой синицы в условиях промышленного загрязнения // Вестн. Днепропетров. ун-та. 1993. Вып. 1: Биология и экология. С. 129.
- 6. Бельский Е.А. О связи массы птенцов дуплогнездников с техногенным загрязнением // Биота Урала / Информ. материалы. Екатеринбург, 1994. С. 8-9.
- 7. Бельский Е.А., Ляхов А.Г., Поленц Э.А. Население птиц // Воробейчик Е.Л., Садыков О.Ф., Фарафонтов М.Г. Экологическое нормирование техногенных загрязнений экосистем. Екатеринбург, 1994. С. 193-204.
- 8. Безель В.С., Бельский Е.А. Репродуктивные показатели птиц-дуплогнездников в условиях техногенного загрязнения среды обитания // Доклады Академии наук. 1994. Т. 338, N 4. С. 555-557.
- 9. Бельский Е.А., Безель В.С., Поленц Э.А. Ранние стадии гнездового периода птиц-дуплогнездников в условиях техногенного загрязнения // Экология. 1995. N 1. C. 46-52.
- 10. Бельский Е.А., Безель В.С., Ляхов А.Г. Характеристика репродуктивных показателей птиц-дуплогнездников в условиях техногенного загрязнения // Экология. 1995. N 2. C. 146-152.
- 11. Бельский Е.А. Некоторые особенности онтогенеза птиц-дуплогнездников в условиях техногенного загрязнения // Механизмы поддержания биологического разнообразия. Екатеринбург. 1995. С. 178-183.
- 12. Бельский Е.А., Степанова З.Л. О влиянии промышленного загрязнения на состояние птенцов лесных дуплогнездников // Чтения памяти профессора В.В. Станчинского. Смоленск, 1995. Вып. 2. С. 96-99.
- 13. Безель В.С., Бельский Е.А., Мухачева С.В. Токсическое загрязнение среды: процессы воспроизводства в популяциях млекопитающих и птиц // Устойчивое развитие: загрязнение окружающей среды и экологическая безопасность / Тез. докл. 1 междунар. научно-практ. конф. Днепропетровск, 1995. Т. 2. С. 64.