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Fluctuation of animal populations continues to be
one of the most interesting and mysterious ecological
phenomena. A lot of evidence available to date sug�
gests not only regular changes in population abun�
dance, but also clear cycling of various dynamic modes
in biological populations.

The most striking and well�known examples of
changes in animal population dynamics are transitions
between stable and cyclic phases in the lemming
(Lemmus lemmus) populations all over southern Nor�
way [1] and in the red�gray vole (Clethrionomys rufoca�
nus) populations in Finland [2]. The reverse situation
can be also observed, when small fluctuations around
the equilibrium state are replaced by either oscillatory
or chaotic modes. For example, a trend of the snow
goose population (Chen caerulescens) in the New York
state (United States) to grow up monotonously for a
long time has changed to irregular oscillations, proba�
bly, because of exceeding the ecological capacity of the
environment [3]. Another type of disturbed popula�
tion dynamics is related to variation in the lengths of
cycles. In particular, in Canada and the northern
United States, there was a transition from two� to
three�year oscillations in the evening grosbeak (Cocco�
thraustes vespertinus) population [4]. Note that similar
phenomena were observed in the populations of lem�
ming and some vole species, because the cycles with
lengths of 2, 3, and 4 are characteristic of them [5, 6].
Moreover, there are situations when non�interacting,
practically identical populations of the same species
display different dynamics. In particular, the labora�
tory experiments have demonstrated that, at the same
initial population size and under similar conditions,
two different anti�phased periodic modes may be

observed in the flour beetle (Tribolium castaneum)
populations [7].

Thus, there are situations when local populations
have different (and sometimes radically different)
modes of population dynamics at the same values of
demographic parameters. This phenomenon of the
dynamic mode dependence on initial conditions is
referred to as multistability in the theory of dynamic
systems [8]. Appearance of several different dynamic
modes is possible when a system has several stable
attractors, each serving as a stable point or being
involved into a limiting set of attractors (e.g., an
invariant curve). Hence, the term “multistability” is
somewhat misleading in this context and, to our opin�
ion, it is more convenient to use a new notion of “mul�
timode” to reflect the essence of the phenomenon
occurring in real objects (different population dynam�
ics depending on the initial conditions). Note that a
natural change of dynamic regimes can be readily
explained as a multimode phenomenon because the
modifying influence of external factors can be
regarded, in particular, as modification of initial con�
ditions.

At present, the study of mechanisms responsible
for switching of the population dynamic modes is of
great interest. None of the numerous concepts and
hypotheses proposed to explain the emergence and
disappearance of fluctuations in population size is uni�
versally accepted.

In this study, the multimode phenomenon has been
identified and analyzed using a simple mathematical
model of an animal species population with a short life
cycle (rapid maturation of the juveniles). To illustrate
the adequacy of the model dynamic modes they were
compared with real dynamics of the bank vole (Myodes
glareolus) population. We used the data obtained by
Bernstein and Khvorenkov using the long�term moni�
toring of the relative total numbers of animals in an
Udmurt station.

Equations of dynamics. There are the following
stages in the life cycle of most murine rodents: in
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spring, the overwintered animals come out from under
the snow and their reproduction begins to provide sev�
eral litters for the spring–summer period. Late in
autumn the population “goes under the snow” for the
whole winter. Under favorable condition, reproduc�
tion of mature animals, mostly the young of the cur�
rent year, continues in winter; i.e., a transition is
observed from the seasonal to year�round reproduc�
tion [5, 9, 10]. Immature underyearlings attain matu�
rity during winter. Hence, by the beginning of the next
breeding season, when the snow melts, the population
is represented by two age groups: the underyearlings
born under the snow and the mature overwintered ani�
mals.

For this life cycle, the following equation of the
dynamics can be written, which links the initial popu�
lation sizes of the adjacent generations:

(1)

where n is the breeding season number; x is the num�
ber of animals born under the snow (mature under�
yearlings), y is the number of overwintered mature
animals; R1 and R2 are the reproductive indexes of
mature groups taking into account survival of the
young, s and ν are the animal survival in different age
groups.

Abundance of the murine populations is often
believed to be mainly regulated via the limiting of birth
rate [5, 9, 10], which is always reduced at high popula�
tion numbers. In particular, with increasing popula�
tion size, the immature animal puberty is slowing
down, while among sexually mature animal, the inter�
vals between successive pregnancies are increased. In
addition, the death rate of mainly young animals
grows up. With this in mind, we assume that, as in
Ricker’s model [11], R1 and R2 are functions of the age
group sizes, and we write them as

and . 

The r1 and r2 parameters correspond to the repro�
ductive potentials of mature groups; β and γ coeffi�
cients of limitation which reveal the influence of com�
petition between mature individuals of different age in
the birth rate and survival juveniles.To reduce the
number of parameters, it is assumed that β and γ are
the same in both adult groups. Then, the dynamics
Eq. (1) looks like

(2)

Simple substitutions of the variables sγ · x → x, γ · y →
y, a1 = r1, a2 = sr2, ρ = β/(sγ) makes it possible to
reduce model (2) to the four�parametric model

(3)
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where a1 > 0, a2 > 0, ρ ≥ 0, 0 < ν ≤ 1.

System (3) has a unique nontrivial fixed point

(4)

under the conditions of existence ρ ≥ 0, 0 ≤ ν < 1,
a2/(1 – ν) + a1 > 1.

We investigated the stability of solution (4) and
examined various scenarios of the transition from sta�
ble fixed point to fluctuations and irregular dynamics.
Figure 1 shows changes in stability region in the space
of parameters a1 and a2 at different ρ and ν values, as
well as possible scenarios of transition to fluctuations
and chaotic dynamics.

Studying the boundaries of the stability region
showed that a loss of stability depends on the ratio of
parameters ρ and ν. If ρ < 1 (because of a change in the
model parameters and crossing the boundary of the
stability region), then a loss of stability occurs accord�
ing to the Neimark–Sacker scenario: population
dynamics of the age classes becomes quasi�periodic.
When ρ > ρ* = (3 + ν)/(ν2 + 2ν + 1), a loss of stability
of the fixed point is going on Feigenbaum’s scenario:
persistent fluctuations occur in the number of popula�
tion. When 1 ≤ ρ ≤ ρ* = (3 + ν)/(ν2 + 2ν + 1), both of
the above scenarios are possible.

Afterwards, we focused on detailed analysis of the
possible dynamic modes in the zone of equilibrium
and outside this zone.

Possible dynamic modes: numerical study and emer�
gence of the cycle with a length of 3. In numerical exper�
iments, it has been found out unexpectedly that,
within the region of parameters where the stationary
solution is stable, there is a subregion where other sta�
ble attractors appear in addition to this equilibrium.
When ρ < 1, the cycle of the length 3 (or 3�cycle) is
such a stable attractor. This means that, at the same
values of the model parameters, the population of a
certain initial size comes to a stable equilibrium while
in a population of another initial size a transition
occurs to stable 3�year oscillations. Coexistence of dif�
ferent dynamic modes at similar parameter values is
well known for the attractors that appear in a region of
irregular dynamics. The effects of this kind can be
when a system has several stable equilibriums (e.g.,
bistability). However, in the given case, the model has
a unique non�trivial fixed point and a variety of
dynamic modes arises at the demographic parameter
values from the stability region of the stationary solu�
tion.

A combination of the analytical and numerical
studies of model (3) suggests that 3�cycle appears as a
result of fold bifurcation. The curves in Fig. 2, which
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are constructed by scanning [12], describe the three�
fold iterated model equations (3). Intersections of
these curves correspond to three fixed points of opera�
tor (3) as applied threefold: stable equilibrium, three
points of the stable 3�cycle, and three points of the
unstable 3�cycle. Furthermore, Fig. 2 shows the basins
of attraction (the initial value areas) from which the
system tends to stable equilibrium (this area is marked
with gray and 1) and to the stable 3�cycle (three white
areas and 3). Note that the unstable 3�cycle is located
at the boundaries of the basins of attraction, while the
stable 3�cycle is “within” its own basin of attraction at
a distance from the basin of attraction of stable equi�
librium.

When 1 ≤ ρ ≤ ρ* and loss of stability occurs accord�
ing to the Neimark–Sacker scenario in zones of both
regular and irregular dynamics, not only the length�3
cycle, but also a “periodicity window” may exist which
corresponds to the attracting cycle of the length 4.
Hence, the basins of attraction for the cycles of
the lengths 1, 3, and 4 coexist in the phase space of sys�
tem (3) (Fig. 3).

It should be emphasized that, in this system, the
length�4 cycle, as well as the length�3 cycle, appears as
a result of tangent bifurcation. Moreover, division of
the phase space on the 3�cycle and 4�cycle basins of

attraction is especially remarkable, because both the
3� and 4�year oscillations are observed in small rodent
populations [5, 6, 9, 13].

When ρ > ρ*, the birth rate is reduced mostly when
the number of underyearlings grows up and a loss of
stability happens according to Feigenbaum’s scenario,
i.e., the two�year oscillations occur. Note that the two�
year cycle of some vole species takes place in nature [5,
6, 9, 13]. When ρ > ρ*, as before, the length�3 cycle
arises in a region of stable nontrivial equilibrium as a
result of fold bifurcation. But the basins of attraction
differ significantly from those when ρ < 1. The sys�
tem (3) phase space represents a set of basins of attrac�
tions of various stable modes and resembles a “zebra”.
The regions from where the system tends to a stable
point alternate with the regions from where it tends to
the stable length�3 cycle.

The use of the model to describe the population
dynamics of the bank vole (Myodes glareolus). At the
next step of our study, we verified the model on data of
real population size. The model parameters were esti�
mated using the materials of many years of monitoring
for the relative total numbers of bank voles (the num�
ber of individuals per 100 trap–days) in the Udmurt
station in the boreal zone of the linden–fir–spruce
subtaiga (57°20′ N, 52° E). The model coefficients

Fig. 1. Stability region of nontrivial fixed point (4) of system (3). Figures on the graphs correspond to the values of the ρ parameter.
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were found by selecting the values with which the sum
of the model population numbers of both age classes
had the best fit to the known sequence of estimated
size of the bank vole population at the beginning of the
breeding season. To estimate the parameters, the min�
imum of residual function was found using the Leven�
berg–Marquardt method [14], as in the MathCAD 14
software, and the penalty method [12].

The model trajectory at the estimated parameters
describes the dynamics trend satisfactorily, but it does
not catch the main peaks of the bank vole population
size. The coefficient of determination, which charac�
terizes the quality of approximation, was R2 = 0.681.
The estimated parameter values are in the zone of
irregular dynamics in the case when the loss of stability
occurs through invariant curve formation; i.e., the

bank vole population numbers undergo quasi�periodic
oscillations. We believe that discrepancy between the
observed and model data is caused by the influence of
external factors. To take into account the effect of
external factors, the functions Ri = (x, y) were modi�
fied as follows:

, (5)

where b is the coefficient which characterizes the
intensity of the external factor effect on winter repro�
duction of the bank vole, Sn is the average value of
Selyaninov’s hydrothermal coefficient [15] for the
period April–July of the year n. This coefficient char�
acterizes the ambient humidity (moisture of soil) in
the vegetative period. This index has been chosen
because it characterizes indirectly food abundance in
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winter, which is a factor having a significant effect on
the dynamics of bank vole population.

Involvement of the external factor enabled us to
catch the main peaks of the population size (Fig. 4a).
The coefficient of determination which characterizes
the efficiency of fit of the actual data to the model was
equal to R2 = 0.88, which is related to the fact that the
coefficients of reproductive potentials of individuals
were not the constants in this case, but they have the
values from the parametric pattern area marked as a
rectangle in Fig. 4b. Furthermore, the maps of asymp�
totic dynamic modes demonstrate that the point esti�
mate of the model parameters fall into a zone of the
cycle of length 6, which emerged because of period
doubling  bifurcation of the 3�cycle . At the same time,
these estimates are shifted into the zone of quasi�peri�
odic dynamics because of the climatic factor influence
(Figs. 4c, 4d).

Thus, we have developed a mathematical model of
the populations with a short life cycle and density�
dependent regulation of the reproduction processes.
In this model of the population dynamics with a sim�

ple age structure, the multimode phenomenon has
been found out, which suggests that, at the same
model parameters, different stable dynamic modes are
possible and the change of dynamic mode depends on
initial population numbers. Hence, specific popula�
tion dynamics depends significantly on the initial con�
ditions (or current population size). It is important
that this effect is observed in a model having simulta�
neously several qualitatively different attractors: an
steady state, limit cycles, and a chaotic attractor.

Various aspects of the model dynamic behavior,
which are based on the recurrence equations, are still
not completely explored, but they enable the research�
ers to explain differences in population dynamics of
some species living virtually under identical condi�
tions. On the other hand, in a local population, in par�
ticular, in the population of murine rodents, the mul�
timode phenomenon makes it possible to explain both
the emergence of oscillations with 3� and 4�year peri�
ods and disappearance of fluctuations.

Our model displays either regular oscillations or
quasi�periodic fluctuations at the parameter values
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corresponding to the estimates obtained on the basis of
population dynamics of the bank vole (Myodes glareo�
lus) in Udmurtia. The influence of external climatic
factors on the population reproduction expands
noticeably the range of possible dynamic modes and
leads virtually to random transitions of these modes
between the basins of attraction.
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