ГЕНЕТИЧЕСКАЯ ТИПОЛОГИЯ, ДИНАМИКА И ГЕОГРАФИЯ ЛЕСОВ РОССИИ

Екатеринбург
2009
ГЕНЕТИЧЕСКАЯ ТИПОЛОГИЯ,
ДИНАМИКА И ГЕОГРАФИЯ ЛЕСОВ
РОССИИ

Доклады Всероссийской научной конференции
(с международным участием), посвященной
100-летию со дня рождения Б.П. Колесникова
(21—24 июля 2009 г., Екатеринбург)

Екатеринбург
2009
курения деревьев за свет. Мы приходим к альтернативному выводу: «лес» — это подземно-сомкнутая лесная экосистема, организованная главным образом корневой конкуренцией древостоя.

Работа выполнена при поддержке гранта РФФИ 08-04-00709 и Программы Президиума РАН «Биологическое разнообразие».

ЛИТЕРАТУРА

1. Иванов В.С. О понятиях фитоценоз и элементарной ячейке общественной жизни растений // Вестн. ЛГУ. Биология. 1966. Вып. 3. С. 56—62.

* * *

УДК 630’182.2:582.28+630’181.351

ЭКТОМИКОРИЗНЫЕ ГРИБЫ В СУКЦЕССИОННОЙ ДИНАМИКЕ ЛЕСНЫХ ЭКОСИСТЕМ

Д.В. ВЕСЕЛКИН

Институт экологии растений и животных УрО РАН, Екатеринбург

Рассматривается роль эктомикоризных грибов в лесных экосистемах. Показано, что группировки эктомикоризных грибов и степень их связи с древесными растениями в хо- де сукцессионной динамики лесов изменяются. Приведены данные, свидетельствующие об активном участии эктомикоризных грибов в сукцессиях растительности.

Гетеротрофные организмы — животные, грибы, бактерии — неотъемлемый (системообразующий) компонент любой экосистемы. Утилизируя продукцию растений, гетеротрофы обеспечивают экосис- темный круговорот. Значение гетеротрофов в экогенетических сме- нах связывают с их участием в преобразовании биотопов, а в демута- ционных сменах — также с регуляцией возникновения и направлений хода смен растительности [4, 8, 9, 11]. Место и значение эктомикориз- ных грибов в сукцессионной динамике лесов до настоящего времени не определено.

Эктомикоризные грибы (ЭМГ) в структуре лесных экосистем (так- сономически это — представители отделов Basidiomycota и Ascomycota) — симбионыты деревьев, так как часть их мицелия входит в состав эктомикори- зы — поглощающих органов деревьев. Гифы ЭМГ поглощают из поч- венного раствора соединения азота и фосфора, которые депонируются в

80
эктомикоризных чехлах, а затем обмениваются на продукты фотосинтеза. Обладая разнообразным ферментативным аппаратом [3], ЭМГ могут разлагать органические полимеры и усваивать N и P из морфмассы растений и, вероятно, животных [21], а также микроэли грибов других трофических групп [24]. Этим, во-первых, расширяется спектр источников, из которых N и P поступают в связанные с ЭМГ деревья, и, во-вторых, достигается ускорение и повышается степень замкнутости круговорота биогенов в экосистеме [5]. Связанные с фотосинтезирующими симбионтами, ЭМГ избавлены от необходимости конкурировать за источники энергии и органический углерод (Corg) с другими почвенными организмами. Вследствие этого они формируют значительную биомассу (по разным оценкам, продукция ЭМГ может составлять от 150 до 1000 (175) г/м² в год) и являются доминирующими организмами почвенной биоты лесов [18], выступая важнейшим депо азота в таежных экосистемах [12].

Таким образом, функциональная роль ЭМГ в лесных экосистемах уникальна и многообразна. Являясь гетеротрофами, ЭМГ участвуют в формировании первичной экосистемной продукции, контролируя поступление в деревья элементов минерального питания. Кроме того, они обеспечивают прямой путь поступления Corg в почву без его предварительно го закрепления в продукции деревьев. И, наконец, ЭМГ взаимодействуют с минеральным компонентом почвы [22] и различными группами почвенной биоты. ЭМГ — не просто посредники во взаимодействии между деревьями и почвой, модифицирующие механизмы почвенного питания деревьев; они являются интегрирующим компонентом, связывающим в единую сеть многообразные взаимодействия между автотрофными и гетеротрофными организмами и минеральным компонентом почв [5].

Изменение видового состава ЭМГ в ходе сукцессионной динамики лесов. Высокое функциональное разнообразие ЭМГ обеспечивается их таксономическим разнообразием. В районах, где представлены все этапы сукцессионной системы лесной растительности, существуют различные структурно-функциональные группы видов ЭМГ: а) в неодноковой степени специализированные к симбиозу с разными видами деревьев; б) локализованные в различных горизонтах почвы или других субстратах; в) характерные для ранних (молодые древостоя) или поздних (зрелые древостоя) этапов сукцессионной динамики экосистем [12]. Имеются свидетельства быстрых изменений группировок ЭМГ после локальных нарушений древостоев, вызывающих дигressивно-демутационные смены биоты (пожары [14, 17, 23]; вырубки [19]; техногенные воздействия [1, 15]). Показано повышение степени разнообразия видов ЭМГ с увеличением возраста древостоя [16]. Отмечены изменения структуры их группировок в ходе экогенетических смен [13, 20]. С ростом сукцессионной продвинутости экосистем возрастает представленность в них ценофильных видов ЭМГ, характерных для поздних сукцессионных этапов; об увеличении общего разнообразия (видового богатства) ЭМГ можно говорить с меньшей уверенностью [6]. Таким образом, видовые композиции сообществ ЭМГ в экосистеме в некоторой мере отражают историю ее формирования.

Тестовая связь древесных растений с ЭМГ в ходе сукцессий. Для понимания значения эктомикоризного симбиоза в динамике лесных экосис-
тем важными являются следующие обстоятельства. Во-первых, симбиоз с ЭМГ характерен для экофизиологической (не таксономической) группы растений — для хвойных и лиственных деревьев, как вечнозеленых, так и листопадных. Другими словами, эктомикоризный симбиоз характерен для определенного типа экосистем — существующих в определенных географо-климатических условиях экосистем с доминированием древесных растений, со специфическим характером почвообразовательных процессов, типом и емкостью круговорота. Во-вторых, у видов, формирующих древостои на терминальных (климаксных) этапах сукцессий (Abies, Fagus, Picea, Quercus) тенденция (облигатность) связи с ЭМГ выше, чем у деревьев более ранних сукцессионных этапов (Acer, Alnus, Betula, Populus, Salix) [7]. В-третьих, даже у облигатно- и высокомикотрофных видов деревьев тенденция связи с ЭМГ и функциональное значение эктомикоризного симбиоза изменяются в зависимости от степени сукцессионной продвижённости экосистемы. В целом последовательные смены видов древесных растений в ходе спонтанного развития растительности протекают в направлении углубления облигатности их взаимодействия с ЭМГ. Это эмпирическое обобщение подтверждает справедливость представления об эктомикоризном симбиозе как явлении ценотического порядка ([5, с. 37]: «микориза — трофоценотическая ассоциация»), более характерного не для отдельных особей деревьев, но образуемых ими лесных сообществ или, точнее, экосистем с доминированием древесных растений.

Значение ЭМГ в сукцессионной динамике лесных экосистем. От пионерных сукцессионных этапов к терминальным возрастает роль ценотической среды (биотических взаимодействий) и замкнутость круговорота; достигается состояние, максимально близкое к равновесию между продукцией и деструкцией (дыханием) биоценоза [8—10]. «Насыщая» почву своей биомассой, ЭМГ предотвращают потери биогенов из экосистемы, взаимодействуя при этом со всеми ключевыми группами биоты лесов, т. е. играют, по-видимому, роль стабилизатора, поддерживающую на терминальных этапах сукцессий стабильность важнейших экосистемных процессов. Интересно, что в контрастных экологических условиях функциональная активность ЭМГ может оставаться более стабильной, чем состояние древесных растений [2]. Высказано предположение о том, что относительная стабильность состава ЭМГ на разных этапах сукцессионной динамики может ускорять и облегчать процессы демутационных смен растительности [6]. Можно предложить следующий механизм участия ЭМГ в сукцессионных сменах древесной растительности: в результате максимально полного использования (контроля) эктомикоризными грибами ресурсов биогенных элементов (прежде всего азота) высокомикотрофные растения получают селективные преимущества, что соответственно затрудняет (исключает) доступ к этим ресурсам немикотрофных, слабо- и умеренно-микотрофных растений. Этим достигается эндогенная необратимость сукцессионных смен древесной растительности, стабильность (балансированность) терминальных этапов развития лесных экосистем, а возможно, и ускорение прохождения промежуточных этапов их развития.

Исследования поддержаны РФФИ и Правительством Свердловской области (грант 07-04-96121).

82
ЛИТЕРАТУРА

1. Веселкин Д.В. Влияние загрязнения различных типов на разнообразие эктомикориз Pinius sylvestris // Микология и фитопатология, 2006. Т. 40, вып. 2. С. 122—132.

