Pacm. ресурсы, вып. l, 2004

ИЗМЕНЕНИЕ ЧИСЛЕННОСТИ ВСХОДОВ И ПОДРОСТА РІСЕА OBOVATA LEDEB. И ABIES SIBIRICA LEDEB. В TEMHOХВОЙНЫХ ЮЖНО-ТАЕЖНЫХ ЛЕСАХ В УСЛОВИЯХ ЗАГРЯЗНЕНИЯ ВЫБРОСАМИ СРЕДНЕУРАЛЬСКОГО МЕДЕПЛАВИЛЬНОГО ЗАВОДА (СВЕРДЛОВСКАЯ ОБЛАСТЬ)

© Д. В. Веселкии

Внутреннее разнообразие - одно из наиболее важных свойств популяций, повышающее полноту использования ими ресурсов среды и адаптированность к условиям произрастания (Миркин, Наумова, 1998). Для ценопопуляций растений одной из основных форм внутреннего разнообразия является возрастная гетерогенность, связанная с определением стабильности ценопопуляций во времени. По отношению к древесным растениям про-

должительное время исследуются последствия влияния на возрастную структуру и динамику традиционных для лесов типов антропэгенных нарушений (рубок). Информации о возрастной динамике лесов при других типах антропогенных воздействий явно меньше. В частности, при изучении последствий разнообразных техногенных воздействий на лесные экосистемы, преобладают работы, тяготеющие к анализу виталитетной гетерогенности ценопопуляций, связанные с дифференциацией деревьев по разнообразным классам жизненного состояния (Лесные..., 1990; Алексеев, 1997; Черненькова, 2002).

Имеющаяся информация позволяет дать лишь качественную характеристику процессам естественного лесовозобновления в окрестностях промышленных предприятий. При высоких уровнях нагрузок развиэие начальных генераций древесных растений подавляется (Кулагин, 1974; Черненькова, 1986; Комплексная..., 1992; Лесные..., 1990; Воробейчик и др., 1994), а при промежуточных - возможна стимуляция возобновления (Лесные..., 1990; Воробейчик, Хантемирова, 1994). Количественная характериетика экологических факторов, определяюших успешность возобновления в условиях техногенных воздействий, отсутствует. Результаты многочисленных лабораторных и вегетационных экспериментов, выполненные на проростках и ювенильных растениях, также не вносят окончательной ясности в представления об основных причинах, регулирующих развитие дереврев на начальных этапах онтогенеза в условиях техногенных воздействий.

В настоящем сообщении представлены данные о численности начальных генераций деревьев в темнохвойных лесах, подвергающихся действию выбросов крупного медеплавильного комбината, а также предпринята попытка анализа основных факторов, регулируюших их развитие в данных условиях.

МАТЕРИАЛ И МЕТОДЫ

Исследования проводили в 1996-2001 гг. в районе влияғия аэропромвыбросов Среднеуральского медеплавильного завода (г. Ревда, Свердловская обл.). Основные компоненты выбросов комбината - SO_{2} и твердые отходы, содержашие частицы $\mathrm{Cd}, \mathrm{Cu}, \mathrm{Zn}, \mathrm{Pb}$ и As (Воробейчик и др., 1994). Основные направления техногенной трансформации компонентов лесных экосистем (древостоя, живого напочвенного покрова и почвы) в районе исследования описаны в многочисленных публикациях (Ворсбейчик и др., 1994; Воробейчик, Хантемирова, 1994; Воробейчик, 1995; Кайгородова, Воробейчик, 1996; Юсупов и др., 1999).

Пробные площади, на которых проводились исследования, были расположены вдоль трансекты на запад от предприятия (в направлднии наименьших атмосферных переносов) в трех зонах техногенной нагрузки: импактной (на расстоянии 1 и 2 км от источника загрязнения), буферной (4.5 и 7 км) и фоновой (30 км). Общее число площадей 19. Площади расположены в нижних и средних частях пологих склонов, почвы - дерново-подзолистые. Вероятно, до начала работы комбината (1940 г.) на всех площадях были представлены ельники-пихтарники липняковые, о чем можно судить по наличию липы сердцевидной Tilia cordata Mill. в подлеске или в виде вегетативной поросли. Поэтому в импактной зоне отбирались сохранившиеся участки темнохвойных лесов, а не редколесья и не сообщества с преобладанием лиственных деревьев.

В июле-августе 1996 г. на каждой пробной площади был проведен сплошной учет всходов (особи первого года жизни) и подроста (особи высотой менее 0.5 m) ели сибирской Picea obovata Ledeb. и пихты сибирской Abies sibirica Ledeb. на $100 \mathrm{~m}^{2}$. Кроме того, на пробных площадях было определено проективное покрытие травяно-кустарничкового яруса, сомкнутость крон деревьев, а также толщина лесной подстилки. Возрастание мощности последней $(1.0-1.5 \mathrm{~cm}$ в фоновой зоне, $1.8-6.0 \mathrm{~cm}$ - в буферной и $5.6-6.4 \mathrm{~cm}$ - в импактной) является одним из ярких признаков техногенного поражения экосистем и связано с замедлением скорости деструкции растительного опада (Воробейчик и др., 1994; Воробейчик, 1995). В мае 2001 г. на каждой пробной площади на плошадках 1 м 2 были высеяны семена ели сибирской и сосны обыкновенной Pinus sylvestris L. в двух вариантах: с сохраненной и удаленной подстилкой. Обрубку корней взрослых деревьев не проводили, удаляли только надземные части травянистых растений. Норма высева семян $150-250 ш \tau$./1 м ${ }^{2}$. Лабораторная всхожесть семян составляла у ели - 76%, у сосны - 93%. Учет проросших семян осушествляли подекадно в течение 2 мес, выживаемость проростков и сеянцев контролировали с августа по октябрь 2 раза в месяц, а также в начале и конце следующего вегетационного сезона.

Уровень техногенного загрязнения территорий определен на основании концентраций кислоторастворимых форм (суточная экстракция 5%-ной HNO_{3}) трех приоритетных для данного района поллютантов $(\mathrm{Cu}, \mathrm{Cd}, \mathrm{Pb})$, измеренных в подстилке. Индекс загрязнения рассчитан как отношение суммы превышений концентраций металлов в данной точке над минимальной фоновой концентрацией к соответствуюшему минимальному фоновому показателю. Индекс показывает, во сколько раз превышен в данной точке фоновый уровень загрязнения по всему комплексу поллютантов. Обоснование выбора данного индекса как показателя загрязненности территории приведено Е. Л. Воробейчиком с соавторами (1994).

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

На пробных площадях с максимальным уровнем техногенной нагрузки естественное возобновление хвойных почти полностью подавляется (табл. 1). Наибольшая численность первых генераций ели и пихты наблюдается при умеренных уровнях загрязнения. В этих условиях плотность всходов превышает фоновые величины в 3-6 раз, а плотность подроста - в 2.5-10 раз. По мере увеличения уровня загрязнения лесов сначала достигается наибольшая численность подроста, а затем, по мере увеличения техногенной нагрузки, возрастает численность всходов (рис. 1). То, что численность всходов во всем ряду местообитаний оказалась заметно ниже численности подроста, можно предположительно объяснить рядом причин. Одна из них - неблагоприятные условия для плодоношения деревьев или прорастания семян в год исследования. Однако более вероятно, что малое количество зарегистрированных всходов обусловлено активной элиминацией появившихся в июне проростков к концу июля-августу, когда проводились исследования (Структура..., 1973).

Всхожесть семян и выживаемость сеянцев сосны и ели в эксперименте определяли на тех же площадях, на которых учитывали естественное возобновление. Наибольшая грунтовая всхожесть семян зарегистрирована при сильном, но не максимальном или при среднем уровне техногенной нагруз-

ТАБЛИЦА ।
Численность всходов и подроста (экз./га) Picea obovata и Abies sibirica в разных зонах техногенной нагрузки

Примечание. Прочерк означает отсутствие всходов или подроста. Над чертой - средний показатель, под чертой - размах варьџрования данных

ки (табл. 2). Для выявления возможных причин, влияющих на всхожесть семян в изучаемом ряду условий, был проведен двухфакторный дисперсионный анализ. Первый фактор - тип субстрата (2 градации: «подстилка» и «подстилка удалена»). Второй фактор - зона нагрузки (4 градации: «фоновая», «буферная», «импактная на удалении 2 км» и «импактная на удалении 1 км»). Результаты дисперсионного анализа показали, что прорастание ели успешнее происходит, во-первых, в вариантах опыта с сохраненной подстилкой ($P<0.0001$) и, во-вторых, на площадях буферной зоны и на удале-

Рис. 1. Зависимость суммарной численности всходов и подроста Picea obovata и Abies sibirica от уровня техногенной нагрузки.
I-всходын. 2-подрост. По оси ао́сцисс - индекс загрязнения подстилки. усл. ел.; по оси ординат - численность, шт./га: слева - всходов. справа - подроста.

ТАБЛИЦА 2
Всхожесть семян и выживаемость проростков и сеянцев Picea obovata и Pinus sylvestris в эксперименте к концу первого вегетационного периода и мощность подстилки в разных зонах техногенной нагрузки

Показатель	Зоны нагрузки и удаление от предприятия, км			
	фоновая	буферная	импактная	
	30	7 и 4.5	2	1
Средняя мощность подстилки, см	1.2 (1.0-1.5)	3.7 (1.8-6.0)	6.0 (5.6-6.2)	6.0 (5.6-6.4)
P. obovata				
Всхожесть семян, \%	$\frac{2.7(0-4)}{1.3(1-2)}$	$\frac{11.0(5-16)}{4.1(1-12)}$	$\frac{13.4(5-23)}{3.2(0-9)}$	$\frac{9.7(8-11)}{2(0-4)}$
Выживаемость проростков, \%	$\frac{37.0(25-50)}{0}$	$\frac{56.1(15-80)}{39.4(0-91)}$	$\frac{44.8(20-68)}{55.8(0-100)}$	$\frac{0}{18.8(0-75)}$
P. sylvestris				
Всхожесть семян, \%	$\frac{12.0(3-30)}{6.0(3-9)}$	$\frac{38.4(17-57)}{44.3(10-71)}$	$\frac{25.5(4-67)}{12.3(1-39)}$	$\frac{3.4(1-6)}{6.7(3-9)}$
Выживаемость проростков, \%	$\frac{18.8(0-50)}{0}$	$\frac{2.5(0-6)}{4.6(0-27)}$	$\frac{34.2(0-59)}{42.9(0-93)}$	$\frac{0}{23.6(0-75)}$

Примечание. Нал чертой - вариант опыта с сохраненной подстилкой, пол чертой - вариант опыта с улаленной подстилкой. В скобках приведен размах варьирования данных

нии 2 км от предприятия по сравнению с площадями фоновой зоны ($P<0.05$). У сосны обнаружены различия только по фактору «зона нагрузки»: всхожесть в буферной зоне выше, чем во всех остальных ($P<0.0001$).

Выживаемость проростков (а в дальнейшем и сеянцев) в течение первого года жизни также значительно выше в умеренно нарушенных лесах по сравнению с фоновыми и наиболее загрязненными лесами. По результатам двухфакторного дисперсионного анализа достоверные различия обнаружены между площадками на удалении 2 км и фоновыми ($P<0.05$ - ель, $P<0.01$ - сосна). Влияния типа субстрата на выживаемость проростков и сеянцев у обоих видов статистически не обнаружено.

Максимальная суммарная выживаемость на этапе прорастания семян и на этапе развития проростков и сеянцев к концу первого вегетационного сезона закономерно наблюдается при высоком, но не максимальном уровне загрязнения (рис. 2). Этот уровень нагрузки соответствует наиболее нарушенным сообшествам буферной и наименее нарушенным сообществам импактной 30 H , для которых, в частности, характерны максимальные или близкие к ним значения мощности подстилки. В целом прорастание семян и рост ели в первый год жизни в изучаемом градиенте условий успешнее происходит на подстилке (по результатам двухфакторного дисперсионного анализа с теми же градациями, что описаны выше; для фактора «субстрат» - $P<0.001$, для фактора «зона нагрузки» $P<0.05$). К концу второго вегетационного периода сеянцы ели и сосны сохранились только на части площадей импактной зоны.

Полученные данные позволяют сделать вывод о нелинейном характере изменения условий развития начальных генераций темнохвойных лесов в изучаемом техногенном градиенте. Подавление лесовозобновления наступа-

Рис. 2. Зависимость общей выживаемости всходов и подроста Picea obovata (A) и Pinus sylvestris (D) в экспериментальных посевах от уровня техногенной нагрузки.
I - подстилка сохранена; 2 - подстилка удалена. По оси а́сцисс - индекс загрязнения подстилки, усл. ед.; по оси ординат - выживаемость, $\%$

ет только при некоторых критических величинах техногенной нагрузки, а до достижения этого порога наблюдаются эффекты благоприятствования. Для южнотаежных лесов в отличие от северотаежных подобная активизация лесовозобновительного процесса в окрестностях промышленных предприятий при промежуточных уровнях загрязнения отмечается как распространенное явление (Лесные..., 1990). Ранее в районе наших исследований Е. Л. Воробейчиком и Е. В. Хантемировой (1994) была установлена закономерность изменения численности подроста пихты, близкая к установленной нами.

В естественных условиях ведущая роль в определении отпада хвойных на первых этапах развития принадлежит конкуренции за свет и минеральные вещества со взрослыми деревьями и растениями напочвенного покрова, при этом воздействие взрослых деревьев носит характер одностороннего подавления (Карпов, 1968; Орлов и др., 1974; Структура..., 1973; Санников, Санникова, 1985). Из всех типов темнохвойных лесов района наших исследований ельники липняковые в норме характеризуются самыми низкими показателями естественного возобновления (Исаева, Луганский, 1974). В подзоне Европейской южной тайги наименьшая выживаемость всходов ели также характерна для неморальных (в частности, липняковых) ельников по сравнению с менее продуктивными ельниками бореальной группы (Структура..., 1973).

В ходе происходящей под влиянием эмиссий тяжелых металлов в комплексе с SO_{2} дегрессионной сукцессии происходит снижение продуктивности древостоев, изменение травянистого покрова с неморально-кисличного на мохово-хвощевый, накопление мощного слоя подстилки и замедление скорости деструкции растительного опада (Воробейчик и др., 1994; Воробейчик, Хантемирова 1994; Воробейчик, 1995; Кайгородова, Воробейчик 1996). Трансформация лесов сопровождается возрастанием освещенности как под пологом древостоев, так и непосредственно на поверхности почвы, о чем можно судить по снижению показателей сомкнутости крон древостоя и проективного покрытия травяно-кустарничкового яруса (рис. 3). Можно предполагать также снижение напряженности конкурентных взаимодейст-

Рис. 3. Зависимость сомкнутости крон и проективного покрытия травяно-кустарничкого яруса от уровня техногенной нагрузки.
1- сомкнутость крон. 2 - проективное покрытие. По оси айсцисс - индекс загрязнения подстилки, усл. еа.; по оси ординам - сомкнутость крон и проективное покрытие, \%.

Рис. 4. Зависимость длины поглощающих корней Abies sibirica в подстилке и гумусово-аккумулятивном горизонте от уровня техногенной нагрузки.
l - подстилка (эмпирические точки опущены) 2- гумусово-аккумулятивный горизонт. /о оси - индекс загрязнения подстилки. усл. ед.; по оси ординат - длина, мм.

вий всходов и полроста с взрослыми деревьями и травами в подземной сфере. Совокупность данных реакиий, свидетельствующих об ослаблении эф фективности фитоценотических механизмов регуляции численности всходов и подроста, и приводит, по всей вероятности, к их лучшей выживаемо-

По мере приближения к источнику выб́росов и дальнейшего роста интенсивности загрязнения ведущим фактором, вызывающим снижение численности возобновления ели и пихты, становится токсичность почвы. В органогенных горизонтах ближайших к предприятию площадей концентрация кислоторастворимых форм Си цостигает значений 4040 - 7970 мкг/г, Pb -$1210-1740$, Сd - $9-23 \mathrm{mкг} / г$, что соответственно в $40-60$, $13-18$ и $3-5$ раз больше концентраций металлов в подстилке ненарушенных лесов. Токсичность металлов еще более повышается вследствие происходящего вблизи комбината подкисления почвенного раствора (Воробейчик, 1995). Одним из наименее специфических токсических эффектов ионов тяжелых металлов на растения является повреждение корней (Растения..., 1983; Лесные... 1990; Ильин, 1991). В нашем случае повреждение корней деревьев диагностируется по многим признакам. При наибольших уровнях загрязнения тонкие проводящие и поглощаюшие корни ели и пихты не заселяют органогенные (наиболее загрязненные) горизонты почв (Веселкин, 2002а). В сильно нарушенных лесах существенно снижается средняя длина поглощающих корней взрослых деревьев пихты (рис. 4) и длина главного корня двулетних особей пихты (Веселкин, 2002б, 2003)

Наши данные позволяют дополнить изложенную выше модель техногенного изменения факторов, влияюших на успешность лесовозобновления, численно охарактеризовав последовательность «событий», происходящих в ходе дегрессионной сукиессии лесных фитоценозов (табл. 3).

Из представленных параметров при наименьших уровнях загрязнения изменяется толщина подстилки. Затем в интервале значений индекса загрязнения подстилки 7-12 усл. ел. (в умеренно загрязненных сообшествах буфер-

Параметр	Уравнение регрессии	Коэффициент детерминации (R^{2})	Наиболее быстрыс изменения*	Диапазон наиболес быстрых изменений**
Моиность подстилки	$y=4.34 /(1+\exp (8.762-1.332 x))+1.30$	0.93	5.8	4.5-7.0
Заселенность подстилки корнями P. obovata и A. sibirica	$y=46.94+5.03 \cdot x-0.24 x^{2}$	0.71	-	$7-11$
Числеиность подроста	$y=-304.50+3307.20 \cdot x-228.73 \cdot x^{2}+3.93 x^{3}$	0.57	-	8-12
Сомкнутость крон	$y=38.13 /(1+\exp (0.322 x-4.060))+25.63$	0.67	12.6	$8.5-16.7$
Длина корней A. sibirica:				
в подстилке	$y=2.30 /(1+\exp (0.348 x-4.324))+3.20$	0.39	12.3	10.5-14.0
в гумусово-аккумулятивном горизонте	$y=2.33 /(1+\exp (2.022 x-32.582))+2.98$	0.72	16.0	15.5-16.5
в элювиальном горизонте	$y=1.63 /(1+\exp (2.019 x-31.773))+3.22$	0.69	16.0	15.5-16.5
Проективное покрытие травяно-кустарничкового яруса	$y=51.95 /(1-\exp (0.221 x-3.406))+20.83$	0.70	15.5	9.5-21.5
Численность всходов P. obovata и A. sibirica	$y=2024.90-451.09 x+90.72 x^{2}-4.41 x^{3}+0.06 x^{4}$	0.38	-	15-20
Общая выживаемость P. obovata к концу первого года в опытах:				
с сохраненной подстилкой	$y=-0.44+0.90 x-0.03 x^{2}$	0.30	-	15-20
с улаленной подстилкой	$y=-0.88+0.47 x-0.01 x^{2}$	0.21	-	15-20

Характеристика зависимостей параметров от уровня техногенного загрязнения

ной зоны) наблюдается наибольшая заселенность подстилки корнями деревьев. Численность подроста достигает максимальных значений при нагрузке 8 усл. ед., что соответствует точке начала снижения сомкнутости крон (9 усл. ед.), и уменьшается при нагрузке около 12 усл. ед., т. е. практически «одновременно» с наиболее быстрыми изменениями сомкнутости крон (13 усл. ед.). Возможно, разрушение лесного полога и уменьшение плотности подроста обусловлено первыми проявлениями негативного воздействия на растения накапливающиеся в почве, в первую очередь - в подстилке, тяжелых металлов, поскольку при нагрузке в 12 усл. ед. (в интервале 11-14 усл. ед.) происходит снижение длины поглощающих корней, локализованных в органогенных горизонтах. Уровень загрязнения, при котором начинается снижение показателя заселенности подстилки тонкими корнями (примерно 11 усл. ед.), также соответствует нагрузке, при которой начинается наиболее быстрое снижение длины поглощающих корней в этом горизонте.

Наибольшая численность всходов в естественных условиях и наибольшая их выживаемость в эксперименте наблюдается при таких уровнях загрязнения ($15-20$ усл. ед.), при которых значения сомкнутости крон древостоя стабилизируются на нижнем пределе и происходит наиболее быстрое снижение проективного покрытия видов травяно-кустарничкового яруса ($10-22$ усл. ед.). В этом же диапазоне нагрузки резко снижается длина поглощающих корней в минеральных почвенных горизонтах, что, вероятно, указывает на достигнутый предел организменных (на уровне особей растений) и экосистемных (связанных с буферной ролью подстилки по отношению к потоку поллютантов) адаптационных механизмов к избытку тяжелых металлов в почве. Порогом, при превышении которого исследованные лесные экосистемы полностью разрушаются, является, по всей видимости, уровень загрязнения подстилки в 20 усл. ед.

Выстроенная схема основывается на собственных данных и, безусловно, не полна. В частности, в ней не отражены возможные эффекты изменения семенной продуктивности древостоев под воздействием промышленных эмиссий (Лесные..., 1990). Слабо учтены эффекты, которые может вызывать SO_{2} - преобладающий по массе компонент выбросов комбината. Главный акцент сделан на повышении токсичности почвы как основном предполагаемом факторе, обусловливающим деградацию лесов. Сернистый ангидрид несомненно оказывает повреждающее воздействие на ассимиляционный аппарат деревьев, растущих вблизи предприятия, и, кроме этого, изменяя кислотность почвенного раствора, повышает уровень подвижности и биологической доступности ионов тяжелых металлов. Несмотря на неполноту, предложенная последовательность «событий», на наш взгляд, отражает ряд особенностей процесса деградации лесов под влиянием эмиссий тяжелых металлов и вскрывает некоторые функциональные взаимосвязи между реакциями на промышленную нагрузку разных возрастных групп деревьев и других структурных частей лесных сообществ.

Анализируя вероятные причины, определяющие динамику возобновления в токсическом градиенте, нельзя не отметить феномен снижения устойчивости деревьев к загрязнению с увеличением возраста. Эта закономерность связана не только с улучшением условий для развития подроста и всходов, происходящим параллельно с ростом уровня загрязнения и разрушением полога взрослых деревьев, но и с кумулятивным во времени характером воздействия поллютантов на растения (Кулагин, 1974). С увеличением возраста особей, при возрастании продолжительности воздействия на

них токсических вешеств и элиминации наименее приспособленных особей, происходит смешение границы зоны толерантности в сторону более низких уровней загрязнения.

Можно предположить, что высокая численность подроста на некоторых площадях буферной зоны ($18-25$ тыс. экз./га) позволяет этой возрастной группе уже и в настоящем участвовать в перераспределении ресурсов, удерживая их ощутимую часть за ценопопуляциями ели и пихты. Однако при наибольших уровнях нагрузки ситуация значительно меняется. То обстоятельство, что на части плошадей в импактной зоне прорастание семян и развитие всходов в первый год жизни происходят удовлетворительно, а более старшие особи (подрост) отсутствуют, свидетельствует о потере стабильности возрастной структуры ценопопуляций и ограничивает время существования лесов в этих условиях продолжительностью жизни оставшихся взрослых деревьев.

ЗАКЛЮЧЕНИЕ

Исследование, проведенное в южнотаежных темнохвойных лесах, подвергающихся воздействию выбросов Среднеуральского медеплавильного завода (г. Ревда, Свердловская обл.), показало, что при высоких уровнях техногенной нагрузки (на расстоянии $1-2$ км от источника загрязнения) возобновление ели сибирской Picea obovata Ledeb. и пихты сибирской Abies sibirica Ledeb. полностью подавляется. При умеренных уровнях техногенной нагрузки численность всходов и подроста ели сибирской и пихты сибирской возрастает. Максимум численности всходов в естественных условиях и их лучшая выживаемость в экспериментальных посевах достигается при больших уровнях загрязнения почвы. Первоначальное улучшение лесовозобновления связано с техногенным ослаблением фитоценотического пресса (разрушение лесного полога и снижение проективного покрытия травянистых растений). Подавление лесовозобновления при высокой интенсивности загрязнения обусловлено возрастанием токсичности почвы вследствие накопления в ней высоких концентраций тяжелых металлов.

Благодарности

Выражаю благодарность сотрудникам ИЭРиЖ УрО РАН Воробейчику Е. Л. и Трубиной М. Р. за плодотворное обсуждение затронутых в работе вопросов. На заключительном этапе работа поддержана РФФИ (грант № 01-04-96407).

СПИСОК ЛИТЕРАТУРЫ

Алексесев А. С. Теория популяционной биоиндикации антропогенных воздействий // Журн. общей биологии. 1997. Т. 58. № 1. С. 121-131.
В еселкин Д. В. Распределение тонких корней хвойных деревьев по почвенному профилю в условиях загрязнения выбросами медеплавильного производства // Экология. 2002 а. № 4. С. 250-253.
Всселкин Д. В. Стросние и микоризация корней сеянцев ели и пихты при изменении почвенного субстрата // Лесоведение. 2002 б. № 3. С. 12-17.
В сселкин Д. В. Снижение длины поглощающих корней ели сибирской и пихты сибирской в условиях загрязнсния тяжелыми металлами и $\mathrm{SO}_{2} / /$ Лесоведение. 2003. № 3. С. 65-68.

В оробейчик Е. Л. Изменение мощности лесной подстилки в условиях химического загрязнения // Экология. 1995. № 4. С. 278-284.
В оробейчик Е. Л., Садыков О. Ф., Фарофонтов М. Г. Экологическое нормирование техногенных загрязнений наземных экосистем (локальный уровень). Екатеринбург, 1994.
Воробейчик Е. Л., Хантемирова Е. В. Реакция лесных фитоценозов натехногенное загрязнение: зависимость доза-эффект // Экология. 1994. № 3. С. 31-43.
Иль и и В. Б. Тяжелые металлы в системе почва-растения. Новосибирск, 1991.
Исаева Р. П., Луганский Н. А. Естественные лесовосстановительные процессы в подзонах южной тайги и темнохвойно-широколиственных лесов Урала // Лесообразовательный процесс на Урале и в Зауралье. Свердловск, 1974. С. 94-128.
Кайгородова С. Ю., В оробейчик Е. Л. Трансформация некоторых свойств серых лесных почв под действием выбросов медеплавильного комбината // Экология. 1996. № 3. С. 187-193
К а р п о в В. Г. Экспериментальная фитоценология темнохвойной тайги. Л., 1968.
Комплексная экологическая оценка техногенного воздействия на экосистемы южной тайги / Под ред. А. М. Степанова. М., 1992.
К ул агин Ю. З. Лесные растения и промышленная среда. М., 1974.
Л е с н ы е экосистемы и атмосферное загрязнение. Л., 1990
Миркин Б. М., Наумова Л. Г. Наука о растительности (история и современное состояние основных концепций). Уфа, 1998.
Орлов А. Я., Кошельков С. П., Ос ипов В. В., Соколов А.А. Типы лесных биогеоценозов южной тайги. М., 1974.
Растения в экстремальных условиях минерального питания: эколого-физиологические исследования / Под ред. М.Я. Школьника и др. Л., 1983
Санников С. Н., Санникова Н. С. Экология естественного возобновления сосны под пологом леса. М., 1985.
Структура и продуктивность еловых лесов южной тайги / Под ред. В. Г. Карпова Л., 1973.

Черненькова Т. В. Методика комплексной оценки состояния лесных БГЦ в зоне влияния промышленных предприятий // Пограничные проблемы экологии. Свердловск. 1986. С. 116-127
Ч е рненькова Т. В. Реакция лесной растительности на промышленное загрязнение. М., 2002.
Юсупов И.А., Луганский Н.А., Залесов С. В. Состояние искусственных мо лодняков в условиях аэропромвыбросов. Екатеринбург, 1999.

Институт экологии

растений и животных
УрО РАН
Екатеринбург

