Вопросы герпетологии. Материалы Четвертого съезда Герпетологического общества имени А. М. Никольского.

Сборник содержит материалы докладов и стендовых сообщений, представленных на Четвертом съезде Герпетологического общества имени А. М. Никольского, который состоялся в г. Казань 12—17 октября 2009 г.

Издание предназначено для специалистов-герпетологов, зоологов широкого профиля (экологов, морфологов, систематиков, специалистов в области охраны природы), студентов биологических специализаций и преподавателей биологических факультетов высших учебных заведений.

Редакционная коллегия сборника:
Н. Б. Анасьева (гл. редактор), Л. Я. Боркин, И. Г. Данилов, И. В. Доронин (секретарь), Е. А. Дунаев, В. И. Ищенко, А. В. Коросов, В. Н. Куранова, Г. А. Лада, С. Н. Литвинчук, Н. Л. Орлов, В. Ф. Орлова, Р. И. Замалетдинов, Б. С. Туниец, Р. Г. Халиков, А. Ю. Целларнус

ISBN 978-5-901440-64-3

© Герпетологическое общество имени А. М. Никольского, 2011
© Зоологический институт Российской академии наук, 2011
ВОПРОСЫ ГЕРПЕТОЛОГИИ

Материалы Четвертого съезда
Герпетологического общества им. А. М. Никольского

12—17 октября 2009 г.
Казань

Редакционная коллегия сборника:
Н. Б. Анасьева (гл. редактор), Л. Я. Боркин, И. Г. Данилов,
И. В. Дорохин (sekретарь), Е. А. Душев, В. И. Ишенко,
А. В. Коросов, В. Н. Куранова, Г. А. Лада, С. И. Литвинчук,
И. Л. Орлов, В. Ф. Орлова, Р. И. Замалетдинов, Б. С. Тунгев,
Р. Г. Халиков, А. Ю. Целларнус

Санкт-Петербург
2011
GRADIENT OF URBANIZATION AND ITS LONG-TERM DYNAMICS AS A BASIS OF AN EFFECTIVE AMPHIBIAN POPULATION CONTROL

V. L. Vershinin
Institute of Plant and Animal Ecology, Russian Academy of Science, Ural Division, Ekaterinburg

The analysis of results of long-term monitoring of amphibian populations on the territory of urban agglomeration were carried out. It is shown, that the condition of environment well reflects presence of urbanization gradient on important for amphibians parameters — water chemistry of spawning ponds, their temperature mode, structure of plant communities. The features of urban environment determine long-term vectorized transformation of communities and populations structure, that gives serious influence on functional specificity of city biota.
вой деления 0,5 °C. Для оценки химизма перестовых водосборов определялись общая минерализация воды, содержание щелочей Ст, SO₄²⁻, CO₃²⁻, NO₃⁻, NO₂⁻, NH₄⁺, K⁺, Na⁺, Mg²⁺, Ca²⁺, биологическое потребление кислорода (БПК₅), перманганатная окисляемость, содержание нефтепродуктов и экстрактурьемых веществ. Автор выражает глубочайшую благодарность сотрудникам Проектно-технологического бюро при Уральском научно-исследовательском институте водного хозяйства за выполненную работу. Определение состава

Рис. 1. Многолетняя динамика химизма перестовых водосборов. 0 — многолетняя стройка 1 — погрешность величины 2 — аномалия 3 — миф 4 — БПК (биологическое потребление кислорода) 5 — pH.
амфибий проведено в Уральском научно-исследовательском институте водных биоресурсов и аквакультуры. Описание растительной компоненты выполнено д.э.-к.б.н. Е. А. Шуровой и С. В. Кримицыным (ИЭРиЖ УрО РАН).

Проводили учеты численности почвенных беспозвоночных. При каждом учете отбирали 6 кернов почвы площадью 0,045 м² и толщиной 0,05 м. Пробы переворачивали, устанавливали в стеклянных сосудах под электрическими лампами в беспозвоночных контейнерах в сосудах с 70%-ным раствором этанола. Всего было обработано 89 суммарных проб (534 кера). Проведено полирографическое определение потребления кислорода лишайниками R. ridibunda. Полирограф — UNIVERSAL POLAROGRAPH TYPE OH.105 (Produced by Radelkis Electrochemical Instruments H1300. Budapest P.O.B. 103III. Laboreu, V Hungary, Budapest).

Установлено, что парядо с сохранением межзонных различий наблюдалось усечение градиентной дифференциации химической и растительной компонент (рис. 2 и 3) на фоне различий в температурном режиме (табл. 1).

Извлечение карточной базы состояниепка в начале и в конце метаморфоза показало, что структура сообществ почвенных беспозвоночных в эти периоды в охлажденных экосистемах экзотарской зоны и вне урбанизированных территорий обладает большей стабильностью (рис. 5); сельскохозяйственное изменение отмечено в 1—2 группах потенциальных пищевых объектов.

В структуре сообществ амфибий урбанизированных территорий парядо с отсутствием лесных видов (Salmandrella keyserlingii и Bufo bufo) ускоряется процесс исчезновения травяной растительности и завоевания ею поверхностей — озерной растительности. Спектр питания R. ridibunda включает беспозвоночных-гидробионтов и потенциальные звериные виды. Доля пищевых форм в питании гастронома созревших R. ridibunda при дефиците других пищевых объектов включает позвоночные животных (рыбы, головастиков и сеголетки собственного вида, грызуны и насекомые), что существенно меняет структуру трофических связей наземных и водных экосистем.

Таблица 1. Классификация термограмм тепловых этапов развития амфибий в градиенте урбанизации (суммарно за 1980—2007 гг.).

<table>
<thead>
<tr>
<th>Зона</th>
<th>N°C</th>
<th>z°C</th>
<th>N</th>
<th>N°</th>
</tr>
</thead>
<tbody>
<tr>
<td>II</td>
<td>14.7 ± 0.29 (SE)</td>
<td>4.5—28.5</td>
<td>154</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>13.3 ± 0.28</td>
<td>3.5—27.0</td>
<td>277</td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>11.7 ± 0.28</td>
<td>1.0—28.0</td>
<td>275</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>11.7 ± 0.52</td>
<td>2.0—28.0</td>
<td>156</td>
<td></td>
</tr>
</tbody>
</table>
Изменение содержания кислорода в воде городских водоемов, связанное с большим количеством органики, вызывает снижение концентрации растворенного кислорода, что приводит к изменению видового разнообразия, численности и биомассы микроскопических водорослей в сторону — гемезоспиртов (75%). Минерализованность и обилие органики в перестовых водоемах способствуют формированию специфической альгофлоры, характерной для эпифитных соленых вод.

Пириографическое определение потребления кислорода у головастиков озерной экзотики показало значительное \(F = 13.47; p < 0.0043 \) уменьшение дыхания в загрязненной воде городских водоемов (рис. 6), характеризующее явление гипоксициллиоза [2].
Урбанизированные территории отличают высокие майские среднемесячные температуры водоемов в зонах минно- и малогабаритной застройки (F = 23.78; p < 0.00001), предел их минимальных значений больше из 2.5—3.5 °C (табл. 1).

Следует отметить, что по температурному режиму (в отличие от градиента загрязнения и трансформации растительной компоненты) за тридцатилетний период наблюдений произошло сплавление межгодовых различий.

Для нормального развития амфибий наиболее важными факторами в водную фазу жизненного цикла являются количество кислорода, растворенного в воде и температурный режим перестовых водоемов. Скорость роста и
Рис. 5. Соотношение групп микроскопических водорослей в чересточных водорослях земноводных, находящихся на урбанизированной территории (II—IV) и за городом (К).

Рис. 6. Потребление кислорода гидрофобными земноводными (на 1 м3 воды) водорослями, находящимися на урбанизированной территории (II) и за городом (К).

... развития земноводных в значительной степени (рис. 7) определяются температурными условиями [3, 4]. Размножение на урбанизированных территориях начинается раньше, что связано с более ранним прогревом.

В высокой разнообразие видов обитания в городской черте, в том числе и температурного режима, приводит к расширению лимитов сроков размножения, в сравнении с загородными популяциями.
Длительность эмбрионального развития у R. arvalis с ростом урбанизации изменяется в меньших пределах (таблица 2) по сравнению с длительностью личиночного развития, что объясняется большим стабильностью условий на эмбриональной стадии. Значимые различия в продолжительности эмбрионального развития от оплодотворения до начала самостоятельного питания выявлены только между зонами III и IV (соответственно 14.0 и 16.6 суток, p < 0.05), но отмечается тенденция к сокращению сроков эмбрионального развития.

Таблица 2. Средние сроки (в сутках) различных этапов развития нектоморфной личинки.

<table>
<thead>
<tr>
<th>Зона</th>
<th>Нормативное время инкубации</th>
<th>Эмбриональное развитие</th>
<th>Личиночное развитие</th>
<th>Суточный срок развития</th>
</tr>
</thead>
<tbody>
<tr>
<td>II</td>
<td>5.35 ± 0.6</td>
<td>14.7 ± 0.79</td>
<td>53.1 ± 2.1</td>
<td>67.8 ± 2.2</td>
</tr>
<tr>
<td></td>
<td>21.04—21.05</td>
<td>20.04—26.05</td>
<td>8.06—23.07</td>
<td></td>
</tr>
<tr>
<td></td>
<td>n = 55</td>
<td>n = 51</td>
<td>n = 35</td>
<td>n = 35</td>
</tr>
<tr>
<td>III</td>
<td>6.06 ± 0.9</td>
<td>14.0 ± 1.1</td>
<td>56.4 ± 2.8</td>
<td>71.2 ± 2.9</td>
</tr>
<tr>
<td></td>
<td>14.04—12.05</td>
<td>24.04—24.05</td>
<td>3.06—28.08</td>
<td></td>
</tr>
<tr>
<td></td>
<td>n = 26</td>
<td>n = 23</td>
<td>n = 20</td>
<td>n = 20</td>
</tr>
<tr>
<td>IV</td>
<td>6.97 ± 0.54</td>
<td>16.6 ± 0.69</td>
<td>54.7 ± 1.7</td>
<td>71.4 ± 1.7</td>
</tr>
<tr>
<td></td>
<td>14.04—12.05</td>
<td>3.05—30.05</td>
<td>14.05—10.08</td>
<td></td>
</tr>
<tr>
<td></td>
<td>n = 73</td>
<td>n = 67</td>
<td>n = 57</td>
<td>n = 57</td>
</tr>
<tr>
<td>K</td>
<td>5.18 ± 0.75</td>
<td>16.0 ± 0.92</td>
<td>51.9 ± 2.3</td>
<td>67.5 ± 2.5</td>
</tr>
<tr>
<td></td>
<td>13.04—12.05</td>
<td>2.05—28.05</td>
<td>16.06—20.07</td>
<td></td>
</tr>
<tr>
<td></td>
<td>n = 38</td>
<td>n = 38</td>
<td>n = 28</td>
<td>n = 28</td>
</tr>
</tbody>
</table>
развития в городской черте. Это объясняется низким температурным режимом городских территорий, что обусловлено тепловым загрязнением среды.

Ретроспективным анализом обнаружена тенденция к слабой обратно-пропорциональной зависимости (трехпарный модуль, \(R = 0.30; p = 0.027 \)) между средней длительностью эмбриогенеза и среднемесячными температурами первоначального развития календарного месяца от момента окончания яйровидной стадии развития. Удлинение сроков личиночного развития в обновых экземплярах развитых и городских популяций амфибий может быть связано с ингибирующим действием поллютантов [5]. Значительная неоднородность температурных режимов в пределах города приводит к большому разбросу в фенологии всех этапов жизненного цикла по сравнению с природными популяциями. Низкая численность животных обусловливает укорочение сроков размножения в каждом конкретном местообитании.

Население популяций амфибий под воздействием урбанизации на месте изучения может существенно менять фенодинами популяций, приводя к расширению спектра денатурационных форм. Сравнение городских групп с тремя природными популяциями Урала по степени переклинирования спектров амплитуд с помощью индекса Моранти показало что большинство природных популяций сходны между собой (\(C = 0.88—0.99 \)), при общей встречаемости 47—67%. Исключение составили популяции, населяющие географическую неравномерность волокон Байконурского (\(C = 0.58—0.72 \)) с суммарной частотой 4.7—6.7%. Исключение составили популяции, населяющие географическую аномалию волокон Байконурского (\(C = 0.58—0.72 \)) с суммарной частотой 4.7—6.7%. Исключение составили популяции, населяющие географическую аномалию волокон Байконурского (\(C = 0.58—0.72 \)) с суммарной частотой 4.7—6.7%. Исключение составили популяции, населяющие географическую аномалию волокон Байконурского (\(C = 0.58—0.72 \)) с суммарной частотой 4.7—6.7%. Исключение составили популяции, населяющие географическую аномалию волокон Байконурского (\(C = 0.58—0.72 \)) с суммарной частотой 4.7—6.7%.

Таблица 3. Средние температуры периода эмбрионального развития амфибий в градиенте урбанизации.

<table>
<thead>
<tr>
<th>Зона</th>
<th>1 °С</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>II</td>
<td>15.6 ± 0.4</td>
<td>143</td>
</tr>
<tr>
<td>III</td>
<td>14.3 ± 0.5</td>
<td>93</td>
</tr>
<tr>
<td>IV</td>
<td>11.1 ± 0.3</td>
<td>200</td>
</tr>
<tr>
<td>K</td>
<td>12.4 ± 0.5</td>
<td>85</td>
</tr>
</tbody>
</table>
совпадения [7]. аномалии (нарушение пигментации кожных покровов, отсутствие век, деформация конечности, пороки развития) встречаются вместе с частотой 30.8% (n = 39). У сеголеток R. ridibunda в 2005 г. отмечалась незначительная перегрузка cam в 26.7% случаев (n = 56). Одновременно, в популяциях R. arvalis и R. ridibunda на урбанизированных территориях отмечены специфические признаки патологии печени [8-9], не встречавшиеся ранее (с 1977 по 2002 гг.) и свидетельствующие о принципиальных качественных изменениях состояния среды. Многолетняя динамика доли эмбрионов и сеголеток R. arvalis свидетельствует о низком уровне паразитарных инвазий в популяциях сельской части города.

На урбанизированных территориях существует устойчивый геохимический, температурный и биологический градиент, которые определяются длительное веками миграционное изменение структуры популяций, сообществ, а также сопряженным функциональными блоками. Отмечены изменения функциональных связей, которые существенно влияют на средний биоту. Постоянный долгосрочный мониторинг необходим для эффективного сохранения энтомофауны, поскольку эффект от улучшения природоохранной политики может быть получен только при условии получения надежной информации о состоянии и изменении распространения, биологии и экологии видов.

Работа выполнена при поддержке РФФИ-Урал, проект №10-04-96084, программы развития ведущих научных школ (НШ-1022.2008.4) и научно-образовательных центров (контракт 02.740.11.0279).

2. Теслюк К. В. Влияние радиационного загрязнения на популяции млекопитающих в Приуралье. Автореф. дис. д-ра биол. наук. Пермь, 1995. 40 с.