РАЗЛИЧИЯ В ГАЗООБМЕНЕ ДВУХ МОРФ НАЗЕМНЫХ МОЛЛЮСКОВ
BRADYBAENA FRUTICUM (MULL.) И BRADYBAENA SCHRENSKI (MIDD.)

И. М. Хохуткин, Л. Н. Добринский

В работах, посвященных процессам видеообразования, особое место отводилось изучению так называемых «локальных» популяций, «колоний» и подобных им проявлений приуроченности большинства наземных моллюсков к строго ограниченной территории. При этом за основу отличия таких поселений друг от друга принимались индифферентные признаки, в первую очередь лево- и правозакрученность раковин особей одного и того же вида и наличие или отсутствие на раковине цветных спиральных полос.

Г. Ф. Гауэ и К. П. Смарагдова (1939) впервые показали, что декстральные или синистральные раковины Br. lantzi Lindh. отнюдь не безразличны для животных в определенных условиях эксперимента и, безусловно, коррелируют с физиологическими отправлениями организма. Ряд исследований посвящен выяснению взаимосвязей между условиями среды и фенотипическим составом популяций (Cain, Sheppard, 1950; Schnetter, 1951; Sedlmair, 1956; Lamotte, 1959; Bondi, 1961; Wolda, 1963; Parkin, 1972),
Выведение CO₂ двумя морфами моллюсков *Br. fruticum* и *Br. schrencki*

<table>
<thead>
<tr>
<th>№ опыта</th>
<th>Морфы</th>
<th>Число животных в пробе, экз.</th>
<th>Вес животных в пробе, г</th>
<th>Средний вес одного животного, г</th>
<th>Выделение CO₂, мл/г сырого веса за 1 ч</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Br. fruticum</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Полосатая</td>
<td>27</td>
<td>22,2</td>
<td>0,8</td>
<td>0,17</td>
</tr>
<tr>
<td></td>
<td>Бесполосая</td>
<td>59</td>
<td>46,4</td>
<td>0,8</td>
<td>0,09</td>
</tr>
<tr>
<td></td>
<td></td>
<td>49</td>
<td>47,7</td>
<td>1,0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>58</td>
<td>58,5</td>
<td>1,0</td>
<td>0,11</td>
</tr>
<tr>
<td>2</td>
<td>Полосатая</td>
<td>80</td>
<td>9,3</td>
<td>0,1</td>
<td>0,21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40</td>
<td>12,0</td>
<td>0,3</td>
<td>0,23</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17</td>
<td>16,3</td>
<td>1,0</td>
<td>0,18</td>
</tr>
<tr>
<td></td>
<td>Бесполосая</td>
<td>300</td>
<td>36,3</td>
<td>0,1</td>
<td>0,16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>130</td>
<td>57,0</td>
<td>0,4</td>
<td>0,14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>49</td>
<td>49,1</td>
<td>1,0</td>
<td>0,13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24</td>
<td>42,3</td>
<td>1,8</td>
<td>0,13</td>
</tr>
<tr>
<td>3</td>
<td>Полосатая</td>
<td>44</td>
<td>2,9</td>
<td>0,1</td>
<td>0,22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>21</td>
<td>14,0</td>
<td>0,7</td>
<td>0,15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17</td>
<td>33,8</td>
<td>2,0</td>
<td>0,12</td>
</tr>
<tr>
<td></td>
<td>Бесполосая</td>
<td>293</td>
<td>21,3</td>
<td>0,1</td>
<td>0,16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50</td>
<td>24,5</td>
<td>0,5</td>
<td>0,14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>36</td>
<td>49,5</td>
<td>1,4</td>
<td>0,09</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30</td>
<td>59,5</td>
<td>2,0</td>
<td>0,09</td>
</tr>
<tr>
<td></td>
<td>Br. schrencki</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Полосатая</td>
<td>46</td>
<td>17,8</td>
<td>0,4</td>
<td>0,21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>41</td>
<td>51,7</td>
<td>1,3</td>
<td>0,15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>26</td>
<td>46,5</td>
<td>1,8</td>
<td>0,15</td>
</tr>
<tr>
<td></td>
<td>Бесполосая</td>
<td>51</td>
<td>28,0</td>
<td>0,6</td>
<td>0,17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>70</td>
<td>99,1</td>
<td>1,4</td>
<td>0,12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>32</td>
<td>66,3</td>
<td>2,1</td>
<td>0,11</td>
</tr>
</tbody>
</table>
полосатой морфы выделение CO2 в среднем более чем в 1,5 раза выше, чем у животных бесполосой. Однако возрастные отличия выражались недостаточно четко, потому что средний вес животных был низким однороден. Между тем известно, что у животных интенсивность обмена тесно связана с возрастом («Методы определения продукции водных животных», 1968).

Из той же популяции Br. fruticum брали новую партию моллюсков, разбивая на условные возрастные группы — от мелких (молодых) до крупных (взрослых). Результаты второго опыта показали, что в смешанных весах группах животные по- стоянной морфы в 1,3—1,7 раза, чем животные бесполосой морфы. Причем даже такие крупные моллюски пока ществием по возрасту показывают самых мелких бесполосых. С возрастом внутри каждой морфы наблюдается снижение в выделении CO2 (см. рисунок, а). 1

Первые два опыта проведены с материалом, собранным в начале лета (июнь—июль), а третий — в сентябре. Результаты третьего опыта хорошо согласуются с полу-

![Diagram](image)

Выделение CO2 двумя морфами Br. fruticum (I) и Br. schrenckii (2):

- а — второй опыт;
- б — третий опыт;
- — бесполосая и
- — полосатая морфы.

ченными ранее, но у обеих морф в старше возрастных группах снижалось выделение CO2. Таким образом, к осени, перед уходом на зимовку, выделение CO2 у обеих морф вида понижается (см. таблицу и рисунок, б). В среднем на всех трех опытах при сравнении старше возрасных групп (средний вес животного от 0,8 до 2,0 г) наблюдается существенная разница в выделении CO2 моллюсками полосатой и бесполосой морф Br. fruticum. Эти величины составляют соответственно 0,16±0,020 и 0,11±0,007 мл/г за час. Аналогичные данные получены при сопоставлении старше возрасных групп (от 1,3 до 2,1 г) Br. schrenckii: количество выделенного CO2 у полосатой и бесполосой морф равно соответственно 0,15±0,002 и 0,12±0,005 мл/г за час. При сравнении обеих морф исследуемых близких видов не наблюдается существенных различий в выделении CO2.

Полученные данные свидетельствуют в пользу предположения о различном уровне метаболизма моллюсков сравниваемых морф: у полосатой он выше. Они позволяют вплотную подойти к решению вопроса об экологической значимости различных фенотипов природных популяций моллюсков.

Институт экологии растений и животных
УНЦ АН СССР

Поступило в редакцию 22 сентября 1972 г.

ЛИТЕРАТУРА

Гаузе Г. Ф. и Смарагдова Н. П. Потеря в весе и смертность у правозавитных и левозавитных особей улитки Fruticollina lanzi. Зоол. журнал, 1939, 18. № 2.

Методы определения продукции водных животных. Под ред. Г. Г. Виниберга, Минск, изд. «Высшая школа», 1968.

1 Поскольку газообмен определялся не у отдельного животного, а у группы животных, мы не имели возможности отразить на графиках лимиты полученных величин.

