

The Science of the Total Environment 201 (1997) 137-154

the Science of the Total Environment

Radioactive inventories from the Kyshtym and Karachay accidents: estimates based on soil samples collected in the South Urals (1990–1995)

A. Aarkrog^{a,*}, H. Dahlgaard^a, S.P. Nielsen^a, A.V. Trapeznikov^b, I.V. Molchanova^b, V.N. Pozolotina^b, E.N. Karavaeva^b, P.I. Yushkov^b, G.G. Polikarpov^c

^aRisø National Laboratory, Frederiksbogvej 399, Building 114, PO Box 49, 4000 Roskilde, Denmark

^bInstitute of Plant and Animal Ecology, Ekaterinburg, Russia

^cInstitute of Biology of the Southern Seas, Sevastopol, Ukraine

Received 6 February 1997; accepted 6 April 1997

Abstract

The implementation of the nuclear programme in the Cheliabinsk region in the Ural, where plutonium for the first Soviet nuclear weapons was produced, involved radioactive contamination of the environment. The end of the cold war in the late 1980s initiated a fruitful co-operation between Russian and Western radioecologists. The present study is a joint Russian–Ukrainian–Danish effort to make an independent estimate of the inventories of 90 Sr, 137 Cs and 239,240 Pu from two major contamination events in the South Urals, namely, the Kyshtym accident in 1957 and the Karachay wind dispersion in 1967. The calculations are based upon deposition measurements of the radionuclides carried out on soil samples assuming that the depositions decreased exponentially with distance from the two sources. The inventory estimates are compared with the available Russian information on the two accidents. © 1997 Elsevier Science B.V.

Keywords: MAYAK; Radioactive contaminations; Strontium-90; Caesium-137; Plutonium; Americium

1. Introduction

In 1990 a delegation from the International Union of Radioecologists (IUR) was invited to

Ekaterinburg (at that time Sverdlovsk) by the Russian Academy of Science Ural Branch. The IUR delegation visited some of the contaminated sites from the so-called Kyshtym accident, which

^{*}Corresponding author.

occurred in 1957 (Romanov et al., 1990). Together with the Institute of Plant and Animal Ecology, Russia (IPAE) the Institute of Biology of the Southern Seas, Ukraine (IBSS) samples of soil were collected and analysed for radioactive contamination. It appeared that the samples were contaminated not only by radioactivity from the Kyshtym accident, but also by global fallout from nuclear weapons testing in the 1950s and 1960s, by fallout from the Chernobyl accident in 1986 and by (at that time) an unknown source (Aarkrog et al., 1992). The unknown source was airborne debris from Lake Karachay in 1967, which since the early 1950s had been used by the nuclear weapon plutonium production association 'MAYAK' for storage of liquid radioactive waste (Academy of Science, 1991.

Earlier studies of the Kyshtym and Karachay contaminations have been carried out throughout the years (Izrael et al., 1993; Tsaturov and Anisimova, 1993). Western scientists have, however, first in this decade been able to participate in the studies because the two contamination events were kept secret until the cold war ended in the late 1980s.

The aim of the present study, which has been carried out in a co-operation between IPAE, IBSS and Risø National Laboratory was to make an independent estimate of the inventories of 90 Sr, ¹³⁷Cs and transuranic elements from the Kyshtym and Karachay accidents with special emphasis on plutonium, for which the information is less comprehensive (Pavlotskaya et al., 1992). Such an estimate is difficult because the events to some extent cover the same areas and the soil samples available may not be sufficient to describe the situation. It is complicated also because radionuclides originating from other, more or less well known, sources may interfere. Finally, exact information on the radionuclide composition from the various sources are only partly known. Any estimate of the contributions from 'Kyshtym' and 'Karachay' has thus to be based on several assumptions and is consequently encumbered with a considerable uncertainty. We can, however, compare our measurements with earlier data obtained for the same locations and see if any systematic differences appear.

2. Materials and methods

The soil samples were collected between 1990 and 1995 by IPAE after a method described earlier (Aarkrog et al., 1992), where cross-contamination between the soil layers is avoided. Most samples were collected to a depth of 30 cm and divided in 5-cm layers. Plant material (grass and litter) was usually analysed separately. Fig. 1 shows the sample locations. In the tables with the results the co-ordinates of the sample sites are given together with the distances from MAYAK, which was assigned the co-ordinates of Lake Karachay: 55°42′N 60°48, 5′E. After sampling, the soil was dried and sieved (1 mm mesh size) before analysis. All samples were measured by Ge yspectroscopy. Radiochemical analysis for 90 Sr (Harley, 1972) and ^{239,240}Pu (Talvitie, 1971) were carried out on 10-g aliquots of the treated soil samples. The results were reported as kBq m⁻² with ± 1 S.D. due to counting statistics.

3. Results and discussion

The results of the radionuclide determinations are given in Tables 1-25. From the vertical distribution of the various radionuclides it can be concluded that for all locations except No. 19 (Tygish NW-bank) essentially all activity was found in the upper 30 cm. In case of 90 Sr, the 25-30 cm layer contained on the average 1.5% of the total inventory of 90 Sr in the 0-30 cm layer, vegetation included; the median value of the 23 locations sampled to 30 cm or more was 1%. In the case of ¹³⁷Cs and transuranics (Pu and Am) even less was found in the deeper parts of the soil column. The activity levels in the 25-30 cm layer were for these radionuclides often below the limits of detection, i.e. ≤ 0.1 kBq ¹³⁷Cs m⁻² and ≤ 1 Bq 239,240 Pu m⁻².

Location No. 19 is special because at this site the contaminated top soil layers were displaced to a greater depth after the Kyshtym accident in 1957. Hence we find the highest ⁹⁰Sr concentrations, representing the Kyshtym debris, in a depth of 50–100 cm at this location.

In order to estimate the contributions of the

Fig. 1. Sampling locations for soil (1990-1995) in the South Urals.

various radionuclides from the Kysthtym and Karachay accidents a number of assumptions were made. Firstly we had to establish the background of global fallout from nuclear weapons testing. Two locations No. 24 (Rassoka) and No. 25 (Miassovo) were both considered to represent global fallout background with regard to ⁹⁰ Sr. None of these locations received fallout from the

Kyshtym accident in 1957 or from the Karachay dispersion in 1967. They may, however, have been slightly contaminated with radiocaesium from the Chernobyl accident in 1986. We can neither exclude some contamination with radiocaesium from MAYAK at Miassovo and by the neighbouring Beloyarsk nuclear power plant in the case of Rassoka. The enhanced ¹³⁷Cs/⁹⁰Sr ratios (2.5 at Miassovo and 3.2 at Rassoka) do in fact suggest some non-global fallout radiocaesium at both locations, as the ¹³⁷Cs/⁹⁰Sr ratio in global fallout is 1.6 (UNSCEAR, 1993).

The studied area in the South Urals is located between 55°N and 57°N. This is in the same latitude belt as Denmark. As the amount of precipitation also is similar to that in Denmark, we may compare the Danish global fallout with that in this part of the Urals. In 1991 the global fallout

in Denmark was 1.4 kBq ⁹⁰ Sr m⁻² (Aarkrog et al., 1995) and that at Miassovo and Rassoka was 1.6 kBq m⁻². Hence it seems reasonable to assume, that these two locations have received global fallout ⁹⁰ Sr only.

We shall in our calculations use 1.6 kBq ⁹⁰Sr (in 1991) as the global fallout background in the South Urals. The global fallout background of ¹³⁷Cs is calculated as 1.6 times the ⁹⁰Sr deposition and thus becomes 2.56 kBq m⁻². The ratio ^{239,240}Pu/⁹⁰Sr in integrated fallout from nuclear weapons testing (not corrected for decay ⁹⁰Sr) is according to UNSCEAR (1993) 0.0182. Decay corrected, this factor was 0.0367 in 1991 and the fallout background is thus calculated to be 0.06 kBq ^{239,240}Pu m⁻². Measurements of global fallout ^{239,240}Pu in Denmark in 1976 (Aarkrog and Lippert, 1977) showed a mean of 0.061 ± 0.011

Table 1 Radionuclides in soil and vegetation samples from location no. 1 (position: 55° 38′N 60° 48′E)

Sample	⁹⁰ Sr (kBq m ⁻²)	¹³⁷ Cs (kBq m ⁻²)	^{239,240} Pu (kBq m ⁻²)	²³⁸ Pu/ ^{239,240} Pu
Grass	$(390 \pm 6) \times 10^{-3}$	$(73 \pm 0.3) \times 10^{-3}$	$(0.28 \pm 0.02) \times 10^{-3}$	1.61 ± 0.16
Litter	$(2030 \pm 30) \times 10^{-3}$	$(3000 \pm 6) \times 10^{-3}$	$(25 \pm 3) \times 10^{-3}$	0.64 ± 0.11
Soil 0-5 cm	9.3 ± 0.12	24 ± 0.3	$(540 \pm 40) \times 10^{-3}$	0.085 ± 0.02
Soil 5-10 cm	3.3 ± 0.05	0.98 ± 0.04	$(47 \pm 5) \times 10^{-3}$	0.23 ± 0.07
Soil 10-15 cm	0.53 ± 0.01	0.58 ± 0.05	$(27 \pm 5) \times 10^{-3}$	_
Soil 15-20 cm	0.137 ± 0.01	0.14 ± 0.04		_
Soil 20-25 cm	0.158 ± 0.01	0.08 ± 0.03	$(23 \pm 5) \times 10^{-3}$	_
Soil 25-30 cm	0.142 ± 0.01	0.12 ± 0.03	- /2014	_
Total deposition	16.0	29	660×10^{-3}	0.111

Sample	241 Am/ 239,240 Pu (kBq m ⁻²)	134Cs (kBq m ⁻²)	⁶⁰ Co (kBq m ⁻²)	¹⁵² Eu	²⁴⁴ Cm/ ^{239,240} Pu
Grass	- 10	$(4.0 \pm 0.08) \times 10^{-3}$	_	-9 to 7 h	_
Litter	0.37 ± 0.07	$(113 \pm 1) \times 10^{-3}$	(1.9 ± 1)	$(7\pm1)\times10^{-3}$	0.16 ± 0.04
Soil 0-5 cm	0.21 ± 0.02	_	_	_	_
Soil 5-10 cm	0.51 ± 0.12	_	_	_	_
Soil 10-15 cm	_	_	_	_	_
Soil 15-20 cm	and the second	CHIC661-06611 PM	uril <u>an</u> Attend Mu	Organical and	_
Soil 20-25 cm	_	_	_	_	
Soil 25-30 cm	_	_	_	_	_
Total deposition	0.22	117×10^{-3}	1.9×10^{-3}	7×10^{-3}	a si - bicon vadusta

Samples were collected in September 1992, 7 km from MAYAK. The error term is 1 S.D. due to counting statistics.

56'E) Radionuclides in soil and vegetation samples from location no. 2 (position: 55° 37'N 60°

	as mi	Look -Joeds too		**************************************
1. 2) 11 Dag 1200 16	-2)	(1.9 ± 0.3) × 10 ⁻³		I of embroom a mA h lo bnuome
	60 Co (kBq m ⁻²)	3)	1.9×10^{-3}	a was lead of white sends (Ambrew as
	60Co	H	×	assumed that the "No " No rac
	5-1	1.5	1.9	debris was 71 and that the depos
		S Expos 1 3 3 3 3		Karachay dispersion showed a "Sr-
	-2)	$(2.8 \pm 0.1) \times 10^{-3}$ $(84 \pm 20 \times 10^{-3}$ $(110 \pm 30 \times 10^{-3}$ $(270 \pm 70) \times 10^{-3}$		0.3. These assumptions were base
	¹³⁴ Cs (kBq m ⁻²)	0.1) 20 × 30 × 70) ×	10-	has (999) volagelov (1999) and
	134 (kB	% 4 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	470×10^{-3}	The state of the s
	-	(11)	47	with a 100 time of anothering outsi
	/239,240 Pu	sel on tol be		Karaci (Nikspelov et al., 1997)
	39,24	of 0.3. In		Karachay dispersion were lattered
	m/2	.043 .019 .039 .104		the calculations show a lelow us
	²⁴¹ Am/	1.36 ± 0.173 0.51 ± 0.043 0.185 ± 0.019 0.096 ± 0.039 0.27 ± 0.104		le de line fare mention a caron la
	200	1.36 0.51 0.051 .096 0.27	0.192	THE SET IN IT REWELL TO US YOU SHELD ON
	5	0 0	0	verse consume that I have
	240 P	- 2362		
E	²³⁸ Pu/ ^{239,240} Pu	15 17		
56′1	Pu/	0.30 0.00 0.01 0.11		E pide i
.09	238	2.4 ± 0.30 0.101 ± 0.010 0.148 ± 0.015 0.37 ± 0.114	99	organical section of the section of
N.7.		0.10	0.166	12 00
		3 3 0 - 3		to betay
on:	2)	×1 0-3 10-3 0-3 0-3		(Ex. 6. ± 100) (and 3
ositi	OPu m	$\begin{array}{c} 003 \\ \times \\ $		7.00 ± 0.00
2 (p	239,240 Pu (kBq m ⁻²)	$033 \pm 0.003) \times 10$ $(67 \pm 4) \times 10^{-3}$ $080 \pm 65) \times 10^{-3}$ $136 \pm 18) \times 10^{-3}$ $(11 \pm 2) \times 10^{-3}$ $(5 \pm 2) \times 10^{-3}$ $(5 \pm 2) \times 10^{-3}$		an Of the last
no.	7	$\begin{array}{c} (0.033\pm0.003)\times10^{-3} \\ (67\pm4)\times10^{-3} \\ (1080\pm65)\times10^{-3} \\ (136\pm18)\times10^{-3} \\ (11\pm2)\times10^{-3} \\ (5\pm2)\times10^{-3} \\ (5\pm2)\times10^{-3} \\ (5\pm2)\times10^{-3} \\ \end{array}$	1.30	Maria San Cara Cara Cara Cara Cara Cara Cara Ca
lion	530		, ,	IXA
local		$(67 \pm 1) \times 10^{-3}$ $(2900 \pm 6) \times 10^{-3}$ 27 ± 0.3 64 ± 0.6 0.24 ± 0.08 0.14 ± 0.06 0.27 ± 0.09 0.16 ± 0.06		MA
шо	¹³⁷ Cs (kBq m ⁻²)	××(00 00 00 00 00 00 00 00 00 00 00 00 00		ics.
es fu	137Cs kBq m	$(67 \pm 1) \times 2900 \pm 6) \times 27 \pm 0.3 $ $64 \pm 0.6 $ $0.24 \pm 0.08 $ $0.14 \pm 0.06 $ $0.27 \pm 0.09 $	_	km
mpl	3	(67 2900 27 27 64 0.24 0.14 0.15	94	12 st
n sa		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		mtir mtir
tatio	(2	$(53 \pm 0.8) \times 10^{-3}$ $804 \pm 10) \times 10^{-3}$ 12.0 ± 0.16 3.8 ± 0.05 3.53 ± 0.01 0.34 ± 0.01 0.26 ± 0.01 1.87 ± 0.07		oco con
lege	m_	88.× 90.× 90. 90. 90. 90. 90. 90. 90. 90.		Aug
pu	90 Sr (kBq m ⁻²)	(53 ± 0.8) 804 ± 10) 2.0 ± 0.16 3.8 ± 0.05 1.53 ± 0.01 1.34 ± 0.01 1.25 ± 0.01		D. de
oil a	0	$(53 \pm 0.8) \times 10^{-3}$ $(804 \pm 10) \times 10^{-3}$ 12.0 ± 0.16 3.8 ± 0.05 0.53 ± 0.01 0.34 ± 0.01 0.26 ± 0.01 0.187 ± 0.07	18.0	I S.I
in s	1	0		colle
ides		E E E E E E	sitio	tern
Table 2 Radionuclides in soil and vegetation samples from location no. 2 (position: 55° 37'N 60° $56'E)$	o	Grass Litter Soil 0–5 cm Soil 10–15 cm Soil 15–20 cm Soil 25–30 cm Soil 25–30 cm	Total deposition	Samples were collected in August 1993, 12 km from MAYAK. The error term is 1 S.D. due to counting statistics.
Table 2	Sample	Grass Litter Soil 0- Soil 10 Soil 15 Soil 25 Soil 25	otal (m pp seed and seed of the seed
E &	Sa	S S S S S S	T	I S E

kBq m⁻² (± 1 S.D., N = 8). The fallout background of 241Am is according to UNSCEAR 0.025 kBq ²⁴¹Am m⁻².

In an earlier study (Aarkrog et al., 1992) we assumed that the 90 Sr/137Cs ratio in Kyshtym debris was 71 and that the deposition from the Karachay dispersion showed a 90 Sr/137Cs ratio of 0.3. These assumptions were based on information given by Nikipelov (1989) and Nikipelov et al. (1990). Romanov et al. (1990) have given a 90 Sr/137Cs in Kyshtym debris of 75 and if the ratio between 90 Sr and 137 Cs disposed in Lake Karachay (Nikipelov et al., 1990) is used for the Karachay dispersion we get 0.2 instead of 0.3. In the calculations shown below we have however, used the first mentioned ratios, i.e. 71 and 0.3 because we don't think that the other ratios differ significantly from those previously used.

A set of four equations were set up for each

location and solved in order to calculate the contributions of 90 Sr and 137 Cs from the Kyshtym accident and the Karachay dispersion respectively:

$$x + y = a$$
; $v + p = b$; $-71x + v = 0$; $-0.3y + p$
= 0

x: kBq ¹³⁷Cs m⁻² from Kyshtym y: kBq ¹³⁷Cs m⁻² from Karachay v: kBq ⁹⁰Sr m⁻² from Kyshtym

p: kBq 90 Sr m⁻² from Karachay

a is the total measured ¹³⁷Cs deposition at the location in kBq m⁻² minus the contribution from global fallout and minus the contribution from other sources, e.g. Chernobyl determined from the ¹³⁴Cs content.

b is the total measured 90 Sr deposition at the location in kBq m⁻² minus the contribution from global fallout.

Table 3 Radionuclides in soil and vegetation samples from location no. 3 (position: 55° 42'N 61° 13'E)

Sample	⁹⁰ Sr (kBq m ⁻²)	¹³⁷ Cs (kBq m ⁻²)	^{239,240} Pu (kBq m ⁻²)	²³⁸ Pu/ ^{239,240} Pu
Grass	$(161 \pm 2) \times 10^{-3}$	$(25 \pm 0.1) \times 10^{-3}$	$(0.105 + 0.008) \times 10^{-3}$	0.64 ± 0.075
Litter	$(1530 \pm 20) \times 10^{-3}$	$(1460 \pm 3) \times 10^{-3}$	$(39 + 3.5) \times 10^{-3}$	0.41 ± 0.051
Soil 0-5 cm	7.50 ± 0.10	43 ± 0.1	$(629 + 38) \times 10^{-3}$	0.045 ± 0.007
Soil 5-10 cm	6.8 ± 0.09	3.2 ± 0.06	$(67+7)\times 10^{-3}$	0.075 ± 0.031
Soil 10-15 cm	2.3 ± 0.03	0.45 ± 0.03	$(18+4)\times 10^{-3}$	
Soil 15-20 cm	0.53 ± 0.01	-0.26 ± 0.03	$(7.9 \pm 1.4) \times 10^{-3}$	_
Soil 20-25 cm	0.115 ± 0.007	0.18 ± 0.03	$(6.9 + 1.6) \times 10^{-3}$	_
Soil 25-30 cm	0.047 ± 0.005	0.08 ± 0.03		_
Total deposition	19.0	49	770×10^{-3}	0.064
				0.004

Sample	241 Am/ 239,240 Pu (kBq m ⁻²)	134 Cs 60 Co 60 Co 60 KBq m $^{-2}$)		¹⁵² Eu	²⁴⁴ Cm/ ^{239,240} Pu
Grass	0.47 ± 0.067	$(1.5 \pm 0.04) \times 10^{-3}$	-28/2	_	0.21 ± 0.041
Litter	0.49 ± 0.210	$(27 \pm 0.4) \times 10^{-3}$	$(1.5 \pm 0.2) \times 10^{-3}$	$(3.4 \pm 0.6) \times 10^{-3}$	0.022 ± 0.005
Soil 0-5 cm	0.186 ± 0.026	1	医型 B 整 B B		
Soil 5-10 cm		34	- 1 2 2	_	
Soil 15-20 cm	_	842 3853		_	
Soil 20-25 cm	_	TT Gpec	_	_	_
Soil 25-30 cm	_	-	-	1	_
Total	0.177	29×10^{-3}	1.5×10^{-3}	3.4×10^{-3}	7_

Samples collected in September 1992, 25 km from MAYAK. The error term is 1 S.D. due to counting statistics.

Table 4 Radionuclides in soil and vegetation samples from location no. 4 (position: 55° 42'N 61° 13'E)

,	Sr 3	137Cs	239,240 Pu	²³⁸ Pu/ ^{239,240} Pu	²⁴¹ Am/ ^{239,240} Pu ¹³⁴ Cs	¹³⁴ Cs	244 Cm $/^{239,240}$ Pu
Sample	(kBq m ⁻²)	$(kBq m^{-2}k)$	$(kBq m^{-2})$			$(kBq m^{-2})$	
Grass	$(21 \pm 0.3) \times 10^{-}$	$(21 \pm 0.3) \times 10^{-3} (13.7 \pm 0.1) \times 10^{-3} (0.062 \pm 0.006) \times 10^{-3} 1.65 \pm 0.205$	7.062 ± 0.006) × 10-	3 1.65 \pm 0.205	0.85 + 0.105	$(0.5 + 0.03) \times 10^{-3}$	0.065 + 0.017
Litter	$(1230 \pm 16) \times 10^{-3} (6200 \pm 19)$	$(6200 \pm 19) \times 10^{-3}$	$(40 \pm 2) \times 10^{-3}$			$(57 \pm 3) \times 10^{-3}$	0.043 + 0.0005
Soil 0-5 cm	7.1 ± 0.10	37 ± 1.1	$(560 \pm 39) \times 10^{-3}$	0.030 ± 0.007	0.138 ± 0.017		
Soil 5-10 cm	4.6 ± 0.06	1.68 ± 0.1	$(68 \pm 9) \times 10^{-3}$		0.103 + 0.032		
Soil 10-15 cm	1.32 ± 0.02	0.78 ± 0.05	$(12 \pm 2) \times 10^{-3}$	I			1
Soil 15-20 cm	0.59 ± 0.01		$(22 \pm 3) \times 10^{-3}$	100 DE 110 DE 11	A.		
Soil 20-25 cm	0.39 ± 0.01	1.21 ± 0.1	$(7.3 \pm 1.1) \times 10^{-3}$			91 07 0	
Soil 25-30 cm	0.125 ± 0.004		$(3.4 \pm 0.7) \times 10^{-3}$	iay sai	M.	× 0	
Total deposition 15.4	ın 15.4	50	710×10^{-3}	0.035	0.135	58×10^{-3}	

Samples were collected in August 1993, 25 km from MAYAK. The error term is 1 S.D. due to counting statistics.

Table 5
Radionuclides in soil and vegetation samples from location no. 5 (position: 55° 57′N 61° 04′E)

Sample	90 Sr (kBq m ⁻²)	137Cs (kBq m ⁻²)	^{239,240} Pu (kBq m ⁻²)	²³⁸ Pu/ ^{239,240} Pu	²⁴¹ Am/ ^{239,240} Pu		152 Eu (kBq m ⁻²)
Grass (no sample)							
Litter (no sample)							
Soil 0-5 cm	830 ± 11	73 ± 1	$(3600 \pm 300) \times 10^{-3}$	0.008 ± 0.0018	0.097 ± 0.011	0.24 ± 0.01	0.59 ± 0.04
Soil 5-10 cm	980 ± 13	17.1 ± 0.2	$(1340 \pm 80) \times 10^{-3}$	0.010 ± 0.0016	0.093 ± 0.013	0.09 ± 0.02	0.21 ± 0.06
Soil 10-15 cm	250 ± 3	1.4 ± 0.03	$(129 \pm 13) \times 10^{-3}$	0.047 ± 0.024	_	_	
Soil 15-20 cm	1.49 ± 0.03	0.1 ± 0.03	$(11 \pm 3) \times 10^{-3}$	0.545 ± 0.31	_	_	_
Soil 20-25 cm	2.8 ± 0.04	0.3 ± 0.02	$(49 \pm 8) \times 10^{-3}$	0.429 ± 0.14	_	_	_
Soil 25-30 cm	3.5 ± 0.05	0.9 ± 0.04	$(48 \pm 9) \times 10^{-3}$	- 88 4 5	_	_	_
Total deposition	2068	93	5.2	0.014	0.092	0.33	0.80

Samples were collected in October 1991, 32 km from MAYAK. The error term is 1 S.D. due to counting statistics.

At location 2 the contribution from other sources (probably local fallout from the operation of MAJAK) was estimated by assuming the contributions of ⁹⁰Sr and ¹³⁷Cs from the Kyshtym accident to be zero at this location, because the wind came from the south-west during the accident.

In order to calculate the unknown ratios: $^{239,240} \, \text{Pu}/^{137} \, \text{Cs}$ in Karachay debris and $^{239,240} \, \text{Pu}/^{90} \, \text{Sr}$ in Kyshtym debris, seven locations were selected for the first ratio and six for the second. The selection was based on the above

calculations of the contributions of ⁹⁰Sr and ¹³⁷Cs from the two accidents. The first set of locations i.e. numbers 1, 2, 3, 4, 14, 20 and 23 were identified as sites almost free of ¹³⁷Cs contamination from the Kyshtym accident. These locations were assumed to have contained ^{239,240}Pu from global fallout and the Karachay dispersion only. The ^{239,240}Pu/¹³⁷Cs ratio in Karachay debris were calculated for these locations by dividing the global fallout corrected ^{239,240}Pu with the above calculated ¹³⁷Cs deposition from the Karachay accident. It appeared that this ratio (*r*) varied with

Table 6
Radionuclides in soil and vegetation samples from location no. 6 (position: 55° 58′N 61° 05q′E)

Sample	⁹⁰ Sr (kBq m ⁻²)	137Cs (kBq m ⁻²)	^{239,240} Pu (kBq m ⁻²)	238 Pu $/^{239,240}$ Pu	241 Am/ 239,240 Pu
Litter	0.80 ± 0.012	0.24 ± 0.002	$(3.2 \pm 0.26) \times 10^{-3}$	0.079 ± 0.023	0.29 ± 0.037
Turf	76 ± 1.0	10.5 ± 0.10	$(320 \pm 29) \times 10^{-3}$	0.0128 ± 0.0025	0.110 + 0.013
Soil 0-5 cm	143 ± 1.8	9.8 ± 0.98	$(147 \pm 9.0) \times 10^{-3}$	0.0140 ± 0.0030	0.114 ± 0.012
Soil 5-10 cm	126 ± 1.8	1.34 ± 0.053	$(88 \pm 6.1) \times 10^{-3}$	_	0.136 ± 0.022
Soil 10-15 cm	31 ± 0.4	0.134 ± 0.019	$(8.5 \pm 1.02) \times 10^{-3}$		0.44 ± 0.119
Soil 15-20 cm	11.5 ± 0.15	0.084 ± 0.018	$(5.9 \pm 0.95) \times 10^{-3}$	_ 8	_
Soil 20-25 cm	5.9 ± 0.08		$(3.1 \pm 0.65) \times 10^{-3}$		_
Soil 25-30 cm	3.0 ± 0.04	-	$(2.7 \pm 0.63) \times 10^{-3}$	8 - 5	
Total deposition	397	22	580×10^{-3}	0.0111	0.119

Samples collected in 1995, 34 km from MAYAK. The error term is 1 S.D. due to counting statistics. 60 Co, Turf: 0.028 ± 0.0071 kBq m $^{-2}$.

Table 7
Radionuclides in soil and vegetation samples from location no. 7 (position: 55° 56'N 61° 10'E)

Ann Chicago and Marie	⁹⁰ Sr	137Cs	^{239,240} Pu	²³⁸ Pu/ ²	^{39,240} Pu	24	Am/239	,240 Pu
Sample	$(kBq m^{-2})$	$(kBq m^{-2})$	$(kBq m^{-2})$	m pdsD				
Grass (no sample)						16	lgass c	APRICE (A)
Litter	0.77 ± 0.011	1.57 ± 0.031	$(13.5 \pm 1.22) \times 10^{-3}$	0.117 ± 0.026		$0.24 \pm$	0.033	
Soil 0-5 cm	3.3 ± 0.045	5.3 ± 0.105	$(81 \pm 9.7) \times 10^{-3}$	0.187 ± 0.066		$0.21 \pm$	0.039	
Soil 5-10 cm	1.29 ± 0.020	0.174 ± 0.028	$(3.8 \pm 0.64) \times 10^{-3}$	0 (= = 1		_		
Soil 10-15 cm	0.28 ± 0.008	0.119 ± 0.037	$(3.7 \pm 0.95) \times 10^{-3}$	0.0 (== 0		_		
Soil 15-20 cm	0.163 ± 0.007	0.120 ± 0.035	11 × 40 ± (5) = 10	6 4 <u>10</u> U		_		
Soil 20-25 cm	0.124 ± 0.006	0.101 ± 0.031	$(4.3 \pm 0.77) \times 10^{-3}$					
Soil 25-30 cm	0.079 ± 0.007	_	4 - 4 1 1 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8.0 5 - 1 9 1		.0 —		
Total deposition	6.0	7.3	106×10^{-3}	0.157		0.193		

Collected in June 1995, 34 km from MAYAK.

The error term is 1 S.D. due to counting statistics.

Table 8 Radionuclides in soil and vegetation samples from location no. 8 (position: 55° 58'N 61° 10'E)

The War and The	⁹⁰ Sr	¹³⁷ Cs	^{239,240} Pu	²³⁸ Pu/ ^{239,24}	⁰ Pu	241	Am/ ^{239,240} Pu
Sample	$(kBq m^{-2})$	$(kBq m^{-2})$	$(kBq m^{-2})$				
Grass (no sample)						(6)	go _rote) v. /
Litter	0.58 ± 0.008	0.83 ± 0.017	$(8.7 \pm 0.70) \times 10^{-3}$	0.115 ± 0.015		$0.23 \pm$	0.030
Soil 0-5 cm	2.0 ± 0.028	7.3 ± 1.10	$(88 \pm 7.0) \times 10^{-3}$	0.040 ± 0.009	0.040 ± 0.009		0.031
Soil 5-10 cm	1.11 ± 0.016	0.44 ± 0.032	$(8.7 \pm 0.87) \times 10^{-3}$	P9.		$0.34 \pm$	0.108
Soil 10-15 cm	0.64 ± 0.013	0.109 ± 0.030	$(3.4 \pm 0.82) \times 10^{-3}$	10,0 · — · · · (0,0)		_	
Soil 15-20 cm	0.159 ± 0.0071	0.058 ± 0.026	_ a/ NP 5	66 1 360 m		_	
Soil 20-25 cm	0.048 ± 0.0074	_	_	Sing Bear of Chicago		_	
Soil 25-30 cm	0.045 ± 0.0066	_	_	one-out and		1 -	
Total deposition	4.6	8.7	109×10^{-3}	0.041		0.27	

Samples were collected in June 1995, 37 km from MAYAK.

The error term is 1 S.D. due to counting statistics.

Table 9 Radionuclides in soil and vegetation samples from location no. 9 (position: 55° 59′N 61° 14′E)

and the second	⁹⁰ Sr	137Cs	^{239,240} Pu	²³⁸ Pu/ ²³	^{9,240} Pu	24	¹ Am/ ^{239,2}	⁴⁰ Pu
Sample	$(kBq m^{-2})$	$(kBq m^{-2})$	$(kBq m^{-2})$	("mpEd				
Grass (no sample)							A resid	66
Litter	2.6 ± 0.04	6.9 ± 0.07	$(101 \pm 7.1) \times 10^{-3}$	0.096 ± 0.012		$0.22 \pm$	0.022	
Soil 0-5 cm	3.3 ± 0.04	9.9 ± 0.10	$(82 \pm 5.7) \times 10^{-3}$	MEG - E		$0.25 \pm$	0.036	
Soil 5-10 cm	1.74 ± 0.025	0.64 ± 0.045	$(13.5 \pm 1.22) \times 10^{-3}$	0.21 ± 0.041		$0.098 \pm$	0.034	
Soil 10-15 cm	0.37 ± 0.008	0.159 ± 0.027	$(4.4 \pm 1.24) \times 10^{-3}$	\$50.0 - 15.0		e -		
Soil 15-20 cm	0.092 ± 0.0068	0.182 ± 0.036	_	Salah - ad te		_		
Soil 20-25 cm	0.051 ± 0.0053	E131 C.	01 - Pulse (27)	69s.c =200 0		_		
Soil 25-30 cm	_	_	00 -100	0)6 A -00£5		_		
Total deposition	8.2	17.8	200×10^{-3}	0.063		0.22		

Samples were collected in June 1995, 41 km from MAYAK.

Table 10 Radionuclides in soil and vegetation samples from location no. 10 (position: 56° 07'N 61° 14'E)

		⁹⁰ Sr	137Cs	^{239,240} Pu	238 Pu /2	^{39,240} Pu	²⁴¹ A	m/ ^{239,240} Pu
Sample		$(kBq m^{-2})$	$(kBq m^{-2})$	$(kBq m^{-2})$	(Lisq m	(Sent pills)		signa
Grass (no sample))						- (afer	mas (no sam
Litter		1.98 ± 0.027	10.6 ± 0.11	$(40 \pm 2.4) \times 10^{-3}$	0.046 ± 0.006	FIG.O.A.VE.	0.31 + 0	
Soil 0-5 cm		10.5 ± 0.14	4.3 ± 0.09	$(69 \pm 6.9) \times 10^{-3}$	0.116 ± 0.042	200420	0.152 + 0	
Soil 5-10 cm		4.2 ± 0.06	0.79 ± 0.055	$(10.1 \pm 1.11) \times 10^{-3}$	0.188 ± 0.062	29 4-0:028	0.20 + 0	
Soil 10-15 cm		0.70 ± 0.012	0.36 ± 0.029	$(3.8 \pm 0.69) \times 10^{-3}$			mine	mo Eli-Or Res
Soil 15-20 cm		0.22 ± 0.008	0.193 ± 0.041	$(2.9 \pm 0.68) \times 10^{-3}$	0.0 - 48 1.0		0 -	
Soil 20-25 cm		0.091 ± 0.0052	0.055 ± 0.029	$(4.7 \pm 0.65) \times 10^{-3}$	0.04-401.0			
Soil 25-30 cm		0.072 ± 0.0051	0.033 ± 0.017	$(2.8 \pm 0.84) \times 10^{-3}$	_			
Total deposition		17.8	16.4	134×10^{-3}	0.088		0.188	

Samples were collected in June 1995, 53 km from MAYAK.

The error term is 1 S.D. due to counting statistics.

Table 11 Radionuclides in soil and vegetation samples from location no. 11 (position: 56° 11′N 61° 26′E)

nd of the top	⁹⁰ Sr	137Cs	^{239,240} Pu	238	Pu/ ^{239,240} Pu	²⁴¹ Am / ²³⁹ ,	240 D 11
Sample	$(kBq m^{-2})$	$(kBq m^{-2})$	$(kBq m^{-2})$	ro pilis	(in part	/	Tu
Grass (no sample)						(Strone)	- i von se
Litter	15.9 ± 0.21	4.7 ± 0.09	$(75 \pm 6.0) \times 10^{-3}$	0.035 + 0	0.0059	0.173 ± 0.0184	
Soil 0-5 cm	4.4 ± 0.06	3.7 ± 0.15	$(67 \pm 5.4) \times 10^{-3}$	2.5 4.7—		0.24 + 0.036	
Soil 5-10 cm	3.1 ± 0.05	0.48 ± 0.030	$(9.0 \pm 1.16) \times 10^{-3}$	1.0 + 1-		0.43 ± 0.125	
Soil 10-15 cm	1.25 ± 0.022	0.64 ± 0.052	$(8.4 \pm 1.26) \times 10^{-3}$	9,6 u r ess ()		_	
Soil 15-20 cm	0.62 ± 0.014	0.37 ± 0.040	$(9.6 + 1.64) \times 10^{-3}$	Table 1 22 ft		0.26 + 0.089	
Soil 20-25 cm	0.36 ± 0.012	0.098 ± 0.038	_	_			
Soil 25-30 cm	0.148 ± 0.010	0.110 ± 0.046		_			
Total deposition	26	10.1	169×10^{-3}	0.0153		0.21	

Samples were collected in June 1995, 66 km from MAYAK.

The error term is 1 S.D. due to counting statistics.

Table 12 Radionuclides in soil and vegetation samples from location no. 12 (position: 56° 19′N 61° 28′E)

Sample		⁹⁰ Sr (kBq m ⁻²)	137Cs (kBq m ⁻²)	239,240 Pu (kBq m ⁻²)	²³⁸ Pu/ ²³	^{39,240} Pu	²⁴¹ Am/239,	²⁴⁰ Pu
Grass (no sample))			•		-	Total and	
Litter		3.8 ± 0.054	2.3 ± 0.045	$(24 \pm 1.92) \times 10^{-3}$	0.030 ± 0.006		0.23 ± 0.024	
Soil 0-5 cm		48 ± 0.68	3.5 ± 0.104	$(108 + 8.6) \times 10^{-3}$	0102		0.161 ± 0.021	
Soil 5-10 cm		34 ± 0.45	0.29 ± 0.057	$(28 \pm 3.9) \times 10^{-3}$	856 D = 38			
Soil 10-15 cm		16.1 ± 0.22	0.155 ± 0.061	$(16.3 \pm 2.3) \times 10^{-3}$	150 D 10037		E0 - 10 P	
Soil 15-20 cm		5.8 ± 0.078	0.098 ± 0.032	_	Aram — sta		90.0-	
Soil 20-25 cm		2.5 ± 0.036	0.078 ± 0.030	$(7.2 \pm 0.93) \times 10^{-3}$	0.50 ± 0.13		2.2 + 0.44	
Soil 25-30 cm		9.8 ± 0.128	0.100 ± 0.040	$(8.0 \pm 1.04) \times 10^{-3}$	_			
Total deposition		119	6.5	191×10^{-3}	0.022		0.20	

Samples were collected in June 1995, 80 km from MAYAK.

the distance (d km) from Lake Karachay after the regression: $r = 0.025e^{-0.0186d}$. From this equation and from the calculated ¹³⁷Cs deposition from the Karachay dispersion the Pu deposition from Karachay was calculated for the six other locations.

These sites (numbers 5, 6, 12, 13, 19 and 22) were selected from their high contamination levels with Kyshtym debris. In this way the error from the above calculation of the Karachay-derived Pu was minimized, because this contribution would anyway be minor compared with the contribution of Pu from the Kyshtym accident. The

 239,240 Pu/ 90 Sr ratio in Kyshtym debris was calculated for the six locations and as there was no significant variation with distance the mean ratio was calculated. The mean ratio for the six locations was 0.0018 ± 0.0007 .

We may, however, use another approach in order to estimate the unknown ^{239,240}Pu/ ⁹⁰Sr ratio and ^{239,240}Pu/ ¹³⁷Cs ratios in Kyshtym and Karachay debris, respectively. If the ¹³⁷Cs/ ⁹⁰Sr ratios in the various layers at the above mentioned location 19 (see Table 19) were compared with the ⁹⁰Sr concentrations two distinct groups of data appeared: one with relatively high

Table 13 Radionuclides in soil and vegetation samples from location no. 13 (position 56° 14′N 61° 29′E)

Sample	$(kBq m^{-2})$	137Cs (kBq m ⁻²)	^{239,240} Pu (kBq m ⁻²)	²³⁸ Pu/ ^{239,240} Pu	²⁴¹ Am/ ^{239,240} Pu
Grass (no sample)	distribution of	off to the	neuca 6da	Depth march-Shed	une stab to grow
Litter	0.67 ± 0.009	$(5.2 \pm 0.31) \times 10^{-3}$	$(0.058 \pm 0.046) \times 10^{-3}$	mo - 1 adt lad	0.41 ± 0.077
Soil 0-5 cm	25 ± 0.31	3.7 ± 0.073	$(94 \pm 7.5) \times 10^{-3}$	0.018 ± 0.005	0.160 ± 0.017
Soil 5-10 cm	55 ± 0.71	5.6 ± 0.11	$(175 \pm 12) \times 10^{-3}$	_	0.140 ± 0.017
Soil 10-15 cm	25 ± 0.31	0.56 ± 0.084	$(27 \pm 2.1) \times 10^{-3}$	F MI MILL DILL CHAP	S. Hand Series result
Soil 15-20 cm	3.5 ± 0.048	0.025 ± 0.014	$(1.73 \pm 0.43) \times 10^{-3}$		
Soil 20-25 cm	2.4 ± 0.035	0.061 ± 0.024	- upday awc	that—on will be	io -olisi urriner.
$So.02 \pm 0.018$	0.042 ± 0.026	$(3.0 \pm 0.62) \times 10^{-3}$	N .ave	mat— of our mon	
Total deposition	112	9.9	300×10^{-3}	0.0057	0.132

Samples were collected in June 1995, 73 km from MAYAK.

The error term is 1 S.D. due to counting statistics.

Table 14
Radionuclides in soil and vegetation samples from location no. 14 (position: 56° 15′N 61° 28′E)

	1	⁹⁰ Sr	¹³⁷ Cs	2.7	^{239,240} Pu	²³⁸ Pu/ ²³⁹	,240 Pu	24	Am/239,240 I	Pu
Sample		$(kBq m^{-2})$	$(kBq m^{-2})$		$(kBq m^{-2})$	(Be etc.			Silv	
Grass (no sample))		(4)) and	Ch.				Shreet dire	311
Litter		0.30 ± 0.004	1.35 ± 0.013	(9	$9.9 \pm 0.59 \times 10^{-3}$	0.046 ± 0.005		$0.32 \pm$	- 0.034	
Soil 0-5 cm		1.44 ± 0.021	4.1 ± 0.083	- ($54 \pm 4.9) \times 10^{-3}$	0.052 ± 0.021		0.37 ±	0.065	
Soil 5-10 cm		0.67 ± 0.012	0.41 ± 0.050	(6	$5.2 \pm 0.98) \times 10^{-3}$	11.96 P. O . c.		1.32 ±	0.40	
Soil 10-15 cm		0.23 ± 0.007	0.36 ± 0.043	($7.0 \pm 1.48) \times 10^{-3}$	20 4 V 1 0		_		
Soil 15-20 cm		0.22 ± 0.008	0 - 100			# 1 P P P P P P P P P P P P P P P P P P		_		
Soil 20-25 cm		0.075 ± 0.006	0.041 ± 0.023			$\frac{100}{100}$ 0 ± 0.00				
Soil 25-30 cm		0.075 ± 0.006	0.072 ± 0.023		- b	-0.5100				
Total deposition		3.0	6.4		77×10^{-3}	0.042		0.40		

Samples were collected in June 1995, 74 km from MAYAK.

Table 15
Radionuclides in soil and vegatation samples from Tygish cemetary (location no. 15; position: 56° 21′N 61° 33′E)

Sample	90 Sr (kBq m ⁻²)	137Cs (kBq m ⁻²)	239,240 Pu (kBq m ⁻²)	238 Pu $/^{239,240}$ Pu	241 Am $/^{239,240}$ Pu
Grass (no sample)	1 0000	TECHNO	v anno mito	de en en botelusia	one Connector was c
Litter (no sample)					
Soil 0-5 cm	22 ± 0.2	7.9 ± 0.08	$(100 \pm 6) \times 10^{-3}$	0.027 ± 0.005	0.173 ± 0.019
Soil 5-10 cm	25 ± 1.3	2.0 ± 0.02	$(38 \pm 3) \times 10^{-3}$	itana – lavo drai sisa	0.21 ± 0.041
Soil 10-15 cm	4.5 ± 0.1	0.15 ± 0.01	$(3.5 \pm 0.5) \times 10^{-3}$	all a the state of the	0.60 ± 0.218
Soil 15-20 cm	10.8 ± 0.5	0.63 ± 0.01	$(1.1 \pm 0.3) \times 10^{-3}$		
Soil 20-25 cm	0.80 ± 0.02	0.05 + 0.01	TANKE TO THE TANK	emin - out to densi	nobeo oveda, oil me
Soil 25-30 cm	0.130 ± 0.02	et_zneroni	banget robust	rthos aidt extraed de	nimi <u>m</u> at een sekbev
	Mi sgointi				
Total deposition	63	10.7	143×10^{-3}	0.0189	0.193

Samples were collected in 1990, 86 km from MAYAK.

The error term is 1 S.D. due to counting statistics, but for 90 Sr it is 1 SE of double determinations. 134 Cs, 0–5 cm: 0.20 ± 0.01 kBq m $^{-2}$.

 137 Cs/ 90 Sr ratios and low 90 Sr concentrations and another with low ratios and high concentrations. The 0–25 cm layer represented the first group of data and the 45–95 cm layer the second one. We assume that the 0–25 cm layer with respect to 137 Cs and 239,240 Pu was contaminated by Karachay debris only and that the 45–95 layer with respect to 90 Sr and 239,240 Pu contained Kyshtym fallout only. The two unknown ratios were determined from the two data sets. For Karachay debris (0–25 cm) we got 239,240 Pu/ 137 Cs = 0.0118 \pm 0.0024 (\pm 1 S.D.); N = 5) and for Kyshtym (45–95 cm) we found 239,240 Pu/ 90 Sr = 0.0029 \pm 0.0008 (\pm 1 S.D.; N = 5). The ratios may

Table 16 Radionuclides in soil and vegetation samples from Tygish cementary (location no. 16; Position: 56° 21'N 61° 33'E)

Web Toy	⁹⁰ Sr	¹³⁷ Cs	134Cs
Sample	$(kBq m^{-2})$	$(kBq m^{-2})$	$(kBq m^{-2})$
Grass (no sample)			
Litter (no sample)			
Soil 0-5 cm	8.4 ± 0.1	7.7 ± 0.3	0.15 ± 0.01
Soil 5-10 cm	11.9 ± 0.2	0.96 ± 0.01	 n n n n
Soil 10-15 cm	2.8 ± 0.04	0.17 ± 0.01	- 9 × 6
Soil 15-20 cm	0.48 ± 0.01	0.03 ± 0.01	_
Soil 20-25 cm	0.07 ± 0.01	0.05 ± 0.01	_
Soil 25-30 cm	0.27 ± 0.01	0.41 ± 0.02	_
Total deposition	24	9.3	0.15

Samples were collected in May 1991, 86 km from MAYAK. The error term is 1 S.D. due to counting statistics.

be compared with those estimated above. It appears that the new ratios are both somewhat higher than the previous estimates. The difference between the two estimates for the ratio: (Pu/Sr) Kyshtym was probably significant (P < 0.05) and for the (Pu/Cs) Karachay the difference between the two determinations was highly significant (P < 0.001).

In order to calculate the radionuclide inventories from the Kyshtym and Karachay accidents we assume that the ⁹⁰Sr deposition in kBq m⁻² from the Kyshtym accident followed an exponential decrease with distance from MAYAK and that

Table 17 Radionuclides in soil and vegetation samples SW of Tygish cementary (location no. 17; position: 56° 19'N 61° 33'E)

	⁹⁰ Sr	¹³⁷ Cs	134Cs
Sample	$(kBq m^{-2})$	$(kBq m^{-2})$	$(kBq m^{-2})$
Grass (no sample)		1 191	1735
Litter (no sample)			
Soil 0-5 cm	1.32 ± 0.02	3.5 ± 0.07	0.13 ± 0.02
Soil 5-10 cm	1.21 ± 0.02	0.11 ± 0.01	_0 -
Soil 10-15 cm	0.63 ± 0.01	0.05 ± 0.01	ris State
Soil 15-20 cm	0.28 ± 0.01	0.06 ± 0.01	h - 25%
Soil 20-25 cm	0.12 ± 0.01	0.02 ± 0.01	00-1
Soil 25-30 cm	0.06 ± 0.01	0.06 ± 0.01	-
Total deposition	3.6	3.8	0.13

Samples were collected in May 1991, 83 km from MAYAK. The error term is 1 S.D. due to counting statistics.

Table 18 Radionuclides in soil and vegetation samples SE of Tygish cementary (location no. 18; position: 56° 19'N 61° 37'E)

	⁹⁰ Sr	137Cs	134Cs
Sample	$(kBq m^{-2})$	$(kBq m^{-2})$	$(kBq m^{-2})$
Grass (no sample)	ili yayın 11	Litter Course	dan haner
Litter (no sample)			
Soil 0-5 cm	46 ± 0.6	7.9 ± 0.3	0.12 ± 0.00
Soil 5-10 cm	28 ± 0.4	4.5 ± 0.1	
Soil 10-15 cm	10.5 ± 0.1	1.3 ± 0.03	
Soil 15-20 cm	5.2 ± 0.07	0.43 ± 0.03	
Soil 20-25 cm	2.6 ± 0.04	0.14 ± 0.02	
Soil 25-30 cm	0.38 ± 0.01	0.05 ± 0.01	
Total deposition	93	14.3	0.12

Samples were collected in May 1991, 85 km from MAYAK. The error term is 1 S.D. due to counting statistics.

the activity is confined within a 15° sector out to a distance of 300 km, which approximately describes the contamination pattern as e.g. shown by Romanov et al. (1990). We have furthermore neglected the effect of remedial measures, which at some locations apparently have removed most of the 90 Sr contamination from the Kyshtym accident. Such sites were consequently not included in the calculations.

In the case of Karachay debris we also assume an exponential decrease of kBq ¹³⁷Cs m⁻² with distance. We further assume that the debris was confined within a 60° sector out to a distance of 150 km from MAYAK. This model was derived from the contamination pattern shown by Izrael et al. (1993) and Tsaturov and Anisimova (1993). In this case all locations were included, which showed ¹³⁷Cs from Karachay, as there apparently had been no decontamination efforts carried out after the Karachay accident in 1967.

For the ⁹⁰Sr deposition from the Kyshtym accident (see Fig. 2) we have: $y = e^{(a+bx)}$, where

$$a = 8.08 \pm 0.35$$
, $b = -0.048 \pm 0.015$
y is kBq 90 Sr m⁻² and $x =$ distance from MAYAK in km.

The 90 Sr inventory (I) was calculated for the distance interval 30–300 km

$$I = 15/360 \cdot 2\pi \cdot 3240 \cdot 10^{-6} \int_{30}^{300} x \cdot e^{-0.048} dx$$
$$= 0.2 \text{ PBq}^{90} \text{Sr}$$

The uncertainty of the integral is about a factor

Table 19
Radionuclides in soil and vegetation samples from Tygish NW-bank (location no. 19; position: 56° 22′N 61° 35′E)

	⁹⁰ Sr	¹³⁷ Cs	^{239,240} Pu	²³⁸ Pu/ ^{239,240} F	241 Am 239,240 Pu
Sample	$(kBq m^{-2})$	$(kBq m^{-2})$	$(kBq m^{-2})$	in/ -almus no fare.	chan have a spall sample.
Grass	$(2900 \pm 42) \times 10^{-3}$	$(1.9 \pm 0.2) \times 10^{-3}$	Ar ain		_
Litter	$(400 \pm 5) \times 10^{-3}$	$(133 \pm 4) \times 10^{-3}$	$1.5 \pm 0.1) \times 10^{-3}$	0.067 ± 0.020	0.21 ± 0.036
Soil 0-5 cm	3.4 ± 0.1	1.58 ± 0.14	$(17 \pm 1) \times 10^{-3}$	0.071 ± 0.018	0.19 ± 0.032
Soil 5-10 cm	5.9 ± 0.1	2.3 ± 0.16	$(24 \pm 2) \times 10^{-3}$	0.042 ± 0.021	0.19 ± 0.029
Soil 10-15 cm	8.5 ± 0.1	2.8 ± 0.1	$(36 \pm 3) \times 10^{-3}$	0.064 ± 0.020	0.21 ± 0.040
Soil 15-20 cm	9.5 ± 0.1	2.9 ± 0.2	$(45 \pm 3) \times 10^{-3}$	0.033 ± 0.011	0.29 ± 0.069
Soil 20-25 cm	3.3 ± 0.1	0.65 ± 0.09	$(6\pm0.7)\times10^{-3}$	-300g	0.23 ± 0.057
Soil 25-35 cm	6.1 ± 0.1	0.97 ± 0.24	$(102 \pm 10) \times 10^{-3}$	6 + 12-1 (0.1 ±	En - modern to be
Soil 35-45 cm	13.2 ± 0.2	0.96 ± 0.16	$(55 \pm 3) \times 10^{-3}$	(B) (14) 10) E	State = modernie
Soil 45-55 cm	26 ± 0.4	1.53 ± 0.24	$(86 \pm 6) \times 10^{-3}$	5- 658 - 100 g	0.16 ± 0.026
Soil 55-65 cm	29 ± 0.4	1.47 ± 0.14	$(76 \pm 5) \times 10^{-3}$	- hugg	0.18 ± 0.029
Soil 65-75 cm	25 ± 0.4	1.02 ± 0.12	$(59 \pm 6) \times 10^{-3}$	- \$9.0 ±	0.20 ± 0.040
Soil 75-85 cm	41 ± 0.5	2.5 ± 0.20	$(170 \pm 14) \times 10^{-3}$	- 10 Bel	0.08 ± 0.013
Soil 85-95 cm	36 ± 0.4	1.24 ± 0.14	$(79 \pm 8) \times 10^{-3}$	_	0.16 ± 0.030
Total deposition	211	20.0	760×10^{-3}	0.0081	0.127

Samples were collected in July 1993, 88 km from MAYAK. The error term is 1 S.D. due to counting statistics.

Fig. 2. Sr-90 deposited from the Kyshtym accident related to distance from MAYAK kBa m² = 3243 e^{-0.048 km}

Fig. 3. Cs-137 deposited from the Karachay accident related to distance from MAYAK kBq m $^{-2}$ = 37.8 e $^{-0.0206\, km}$

Fig. 2. 90 Sr deposited from the Kyshtym accident related to distance from MAYAK (kBq m⁻² = 3243 e^{-0.048 km}).

Fig. 3. ¹³⁷Cs deposited from the Karachay accident related to distance from MAYAK.

of 2.5, i.e. the 1 S.D. range is 0.1–0.5 PBq. If the integration had been carried out from 30 to 100 km (i.e. the distance where samples were collected) the inventory would have been 10% lower. In other words only 10% were according to the model, deposited further away than 100 km.

The deposition from 0 to 30 km would according to the model be 0.18 PBq. This figure is, however, very uncertain because we have no samples from this sector. The theoretical deposition from the Kyshtym accident should be about 1 PBq ⁹⁰Sr in 1996 and of this at least half was deposited within 30 km from MAYAK (Romanov et al., 1990). Hence our estimate of 0.2 PBq between 30 and 300 km is not incompatible with the earlier data.

For the ¹³⁷Cs deposition from the Karachay incident (see Fig. 3) we have: $y = e^{(a+bx)}$ where

$$a = 3.68 \pm 0.144$$
, $b = -0.021 \pm 0.0048$
 $y = \text{kBq}^{137}\text{Cs} \text{ m}^{-2}$ and $x = \text{distance}$ from MAYAK in km.

The 137 Cs inventory (*I*) was calculated for the distance interval of 7–150 km:

$$I = 60/360 \cdot 2\pi \cdot 38 \cdot 10^{-3} \int_{7}^{150} x e^{-0.021x} dx$$

Table 20 Radionuclides in soil and vegetation samples from location no. 20 (position: 56° 23'N 61° 25'E)

Sample	⁹⁰ Sr (kBq m ⁻²)	137Cs (kBq m ⁻²)	^{239,240} Pu (kBq m ⁻²)	²³⁸ Pu/ ^{239,24}	⁰ Pu	²⁴¹ Am/ ^{239,240} Pu
Grass (no sample)	110	0 ± 57 / 100	1. (2 4.15)	31.6 - 1	1.0	er 260 Hi. (III)
Litter (no sample)						
Soil 0-5 cm	0.90 ± 0.02	8.4 ± 0.2	$(50 \pm 3) \times 10^{-3}$	0.040 ± 0.006		0.24 + 0.025
Soil 5-10 cm	1.49 ± 0.02	2.5 ± 0.1	$(34 \pm 2) \times 10^{-3}$	98.8-P8.8-	1.0 - 0	0.24 + 0.033
Soil 10-15 cm	0.75 ± 0.01	0.73 ± 0.05	$(8 \pm 0.8) \times 10^{-3}$	10 0-10 n	0	0.38 + 0.073
Soil 15-20 cm	0.45 ± 0.01	0.34 ± 0.06	$(6 \pm 0.7) \times 10^{-3}$	31.0-30.0		0.33 + 0.092
Soil 20-25 cm	0.18 ± 0.01	0.33 ± 0.06	$(3\pm0.5)\times10^{-3}$	V. 7—22.1		— mazz ckies
Soil 25-30 cm	0.10 ± 0.01	-	$(2 \pm 0.4) \times 10^{-3}$	0.020 + 0.006		E ms to calling
Soil 30-35 cm	0.06 ± 0.01	_	(39 ± (2)	85 — 04		e a sta
Soil 35-40 cm	0.04 ± 0.01	_ =	$(1\pm0.3)\times10^{-3}$	68.4-8.5		- 13-27 to 1
			04 × (8 ± (5)			
Total deposition	3.97	12.3	104×10^{-3}	0.020	0	.24

Samples were collected in October 1992, 85 km from MAYAK.

The error term is 1 S.D. due to counting statistics.

 134 Cs. 0–5 cm: 0.22 ± 0.04 kBq m⁻².

Table 21 Radionuclides in soil and vegetation samples from location no. 21 (position: 56° 22'N 61° 45'E)

Sample	⁹⁰ Sr (kBq m ⁻²)	¹³⁷ Cs (kBq m ⁻²)	^{239,240} Pu (kBq m ⁻²)	²³⁸ Pu/ ^{239,240} Pu	²⁴¹ Am/ ^{239,240} Pu	134Cs (kBq m ⁻²)
Grass (no sample) Litter (no sample)						Gross (no sample) Dittor (no sample)
Soil 0–2 cm	1.21 + 0.02	1.49 + 0.013	$(26.3 \pm 1.6) \times 10^{-3}$	0.029 ± 0.005	0.21 ± 0.021	$(62 \pm 2) \times 10^{-3}$
Soil 2-7 cm	6.6 ± 0.70	7.7 ± 0.077	$(120 \pm 8) \times 10^{-3}$	0.031 ± 0.004	0.23 ± 0.032	$(75 \pm 4) \times 10^{-3}$
Soil 7-17 cm	6.0 ± 0.10	3.5 ± 0.035	$(21.7 \pm 2.2) \times 10^{-3}$	1) - 60.0 < 80.0	0.34 ± 0.103	Sail 10-15 un— Sail 13-20 nn
Total deposition	13.8	12.7	168×10^{-3}	0.026	0.24	137×10^{-3}

Samples were collected in May 1990, 94 km from MAYAK.

The error term is 1 S.D. due to counting statistics, but for 90 Sr it is 1 SE of double determinations.

$= 72 \text{ TBq}^{137} \text{Cs}$

The uncertainty of the integral is about a factor of 1.5 i.e. the 1 S.D. range is 50–110 TBq.

The total released activity from the Karachay accident in 1967 was 600 Ci (Academy of Science, 1991). If 75% of this was ¹³⁷Cs, i.e. 450 Ci this would now, 30 years later, have decayed to 225 Ci or 8.3 TBq. Our estimate is nearly an order of magnitude higher. A comparison between our data and Russian aerial survey measurements in 1991 (Izrael et al., 1993; Tsaturov and Anisimova, 1993) show reasonable agreement for stations 1 and 2 (southward of MAYAK), but our stations NE of MAYAK show in general levels twice as

high as the Russian 1991 aerial data. We thus believe that the ¹³⁷Cs contamination from the Karachay incident may either have been somewhat higher than earlier assumed or there may have been other contamination events in the South Urals than those reported so far. Anyway our soil data indicates higher ¹³⁷Cs levels than in the Russian aerial data.

We estimated above a mean 239,240 Pu/ 90 Sr ratio in Kysthym debris of 0.0018 ± 0.0007 . If the estimated 90 Sr Kyshtym inventory is multiplied with this ratio we get 0.4 TBq 239,240 Pu. Had we instead used the 239,240 Pu/ 90 Sr ratio of 0.0029 ± 0.0008 , estimated from location 19, we would have got 0.6 TBq 239,240 Pu deposited in the 30-300

Table 22 Radionuclides in soil and vegetation samples from location no. 22 (position: 56° 29'N 61° 36'E)

	⁹⁰ Sr	¹³⁷ Cs	^{239,240} Pu	238 Pu/ 239	, ²⁴⁰ Pu ²	41 Am/ 239,240 Pu
Sample	$(kBq m^{-2})$	$(kBq m^{-2})$	$(kBq m^{-2})$			
Grass (no sample)				market (* ar psa)	Oracle of Section	planne
Litter (no sample)						
Soil 0-5 cm	16.1 ± 0.20	6.1 ± 0.1	$(130 \pm 9) \times 10^{-3}$	0.019 ± 0.005	0.26	± 0.029
Soil 5-10 cm	15.7 ± 0.2	1.2 ± 0.07	$(32 \pm 2) \times 10^{-3}$	_	0.22	± 0.064
Soil 10-15 cm	9.0 ± 0.1	0.30 ± 0.07	$(6 \pm 0.5) \times 10^{-1}$		560 E48F=	
Soil 15-20 cm	7.9 ± 0.1	0.19 ± 0.06	$(6 \pm 0.6) \times 10^{-1}$	3	DO FRES-	
Soil 20-25 cm	2.9 ± 0.05	0.22 ± 0.08	$(4 \pm 0.5) \times 10^{-}$	3 4 10 1 20 0	N111 F 6001	
Soil 25-30 cm	2.3 ± 0.03	-	$(3 \pm 0.4) \times 10^{-}$	3 <u>~0 ± 60.0</u>	□○○± ξ(ボワー	
Soil 30-35 cm	1.7 ± 0.03	United States	$(2 \pm 0.4) \times 10^{-}$	30 _ 0 _ 00 _	10.0 = F0.0 -	
Soil 35-40 cm	1.0 ± 0.02	spr <u>a</u> z s sus s	$(2 \pm 0.3) \times 10^{-}$	<u>— 0 2 min</u>	10.0 _ 80.0 —	
Total deposition	57	8.0	185×10^{-3}	0.0135	0.22	

Samples were collected in October 1992, 100 km from MAYAK.

Table 23 Radionuclides in soil and vegetation samples from location no. 23 (position: 56° 32′N 61° 46′E)

Sample	90 Sr (kBq m ⁻²)	137Cs (kBq m ⁻²)	^{239,240} Pu (kBq m ⁻²)	²³⁸ Pu/ ^{239,240}	²⁴¹ Am/ ^{239,240} Pu
Grass (no sample)	•	-	*		cos (no samele)
Litter (no sample)					
Soil 0-5 cm	1.61 ± 0.03	7.6 ± 0.2	$(65 \pm 5) \times 10^{-3}$	96-6110 v. 01.1	0.31 + 0.025
Soil 5-10 cm	0.79 ± 0.01	1.13 ± 0.11	$(8\pm1)\times10^{-3}$	en — ma int	0.38 ± 0.033
Soil 10-15 cm	0.42 ± 0.01	0.36 ± 0.08	$(3\pm0.5)\times10^{-3}$	15:-258.0 = 2.1	Do me VI - Vic
Soil 15-20 cm	0.24 ± 0.01	_	$(2\pm0.4)\times10^{-3}$	_	1.50 ± 0.092
Soil 20-25 cm	0.11 ± 0.01	0.2 ± 0.08	$(2\pm0.7)\times10^{-3}$		arrivation la
Soil 25-30 cm			$(2\pm0.4)\times10^{-3}$	_	the rate which the
Soil 30-35 cm	0.04 ± 0.01	_	$(1 \pm 0.3) \times 10^{-3}$	1 m = 10/ 50 19th	Laboration regard soliging
Soil 35-40 cm	— January	double — term	to 18 and a self rotation	- milney'r	in error record (14 D.
Total deposition	3.2	9.3	83×10^{-3}	_	0.31

Samples were collected in October 1992, 110 km from MAYAK. The error term is 1 S.D. due to counting statistics.

km zone. If the total inventory of 90 Sr from Kyshtym is 1 PBq the total 239,240 Pu inventory from Kyshtym becomes 2.4 ± 0.7 TBq.

Concerning the 239,240 Pu inventory from the Karachay accident we calculated this by multiplying the equations for the 239,240 Pu/ 137 Cs ratio and the equation for the deposition density of 137 Cs for Karachay debris. We got the equation kBq 239,240 Pu m⁻² = 0.91 e^{-0.039x}. From this equation we calculated in analogy y with the 137 Cs inventories the inventory of 239,240 Pu from

Table 24 Radionuclides in soil and vegetation samples from Rassoka (location no. 24; position: 56° 48'N 61° 19'E)

	⁹⁰ Sr	137Cs	134Cs
Sample	$(kBq m^{-2})$	$(kBq m^{-2})$	$(kBq m^{-2})$
Grass (no sample)	2.0	" - 5Mir - 140	02 -1
Litter (no sample)			
Soil 0-5 cm	1.12 ± 0.02	4.5 ± 0.1	0.19 ± 0.01
Soil 5-10 cm	0.30 ± 0.01	0.28 ± 0.01	-
Soil 10-15 cm	0.03 ± 0.00	0.05 ± 0.01	_
Soil 15-20 cm	0.03 ± 0.02	0.03 ± 0.01	4 14
Soil 20-25 cm	0.03 ± 0.01	0.06 ± 0.02	- 491
Soil 25-30 cm	0.06 ± 0.01	0.04 ± 0.02	(-g
Total deposition	1.57	5.0	0.19

Samples were collected in June 1991, 126 km from MAYAK. The error term is 1 S.D. due to counting statistics.

Karachay to 0.6 TBq in the 7–150 km zone from MAYAK. If we instead had used the 239,240 Pu/ 137 Cs found at location 19, i.e. 0.0118 ± 0.0024 and multiplied this with the inventory of 137 Cs from the Karachay incident i.e. 71 TBq we would have got 0.8 TBq 239,240 Pu. As a mean estimate for the Karachay-derived plutonium we may use 0.7 ± 0.2 TBq 239,240 Pu. It thus seems that the inventories of 239,240 Pu from the Kyshtym and Karachay accidents both are in the order of 1 TBq.

At the three locations, which contained the highest contamination levels with Kyshtym debris i.e. numbers 5, 6 and 19 the mean 238 Pu/ 239,240 Pu ratio in the total deposit was 0.0115 ± 0.024 (± 1 S.D.; N=3) and the 241 Am/ 239,240 Pu ratio was 0.117 ± 0.027 (± 1 S.D.; N=3). These ratios are about three times lower than those found in global fallout from nuclear weapons testing (UN-SCEAR, 1993). They are also low compared with those found in fuel elements in nuclear power reactors. The low ratios suggest 'low burn up' in the nuclear fuel, which is characteristic for nuclear weapons plutonium.

If we in a similar way looked at the three most contaminated locations with Karachay debris, i.e. numbers 2, 3 and 4 we found 238 Pu/ 239,240 Pu = 0.088 ± 0.069 and 241 Am/ 239,240 Pu = 0.169 ± 0.026 . These ratios are higher than from those in

Table 25
Radionuclides in soil and vegetation samples from Miassovo (location no. 25; position: 55° 09′N 60° 21′E)

* Section 1 National State of the commence and the Property of the American State of the					
⁹⁰ Sr (kBq m ⁻²)	137Cs (kBq m ⁻²)	^{239,240} Pu (kBq m ⁻²)	238 Pu $/^{239,240}$ Pu	²⁴¹ Am/ ^{239,240} Pu	
(10 die Soude 7332-37	SPP1 grand Life	THE	31(3):436-452 (In Russian):	A location of the second 1991; it is second 1991;	
0.70 + 0.01	27.01	(57 L 1) × 10-3	0.077 + 0.017	0.27 ± 0.038	
	The second secon			The state of the s	
0.67 ± 0.02	1.08 ± 0.03		0.016 ± 0.007	0.33 ± 0.075	
0.16 ± 0.01	0.26 ± 0.02	$(7\pm2)\times10^{-3}$	0.003 ± 0.002	other data. Proof dings.	
and the state of t	slow - will M	Sites - Time	if Radioscrive or - materi	distingt and Baston relief	
usi to me	orași - Că Jurică	rafi - Janua	of the Eugeneeum same	in Burope, Cormitee in	
de - 2-1 enui	deserted activities	nor— na	u. 11-13 October - 10:20%	Doc XI-NOTYO - Agreem	
1.62	4.0	96×10^{-3}	0.051	0.271	
	0.79 ± 0.01 0.67 ± 0.02 0.16 ± 0.01	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	

Samples were collected in July 1991, 68 km from MAYAK. The error term is 1 S.D. due to counting statistics.

the Kyshtym debris and suggest thus a higher burnup for the Pu deposited in Lake Karachay. The reason for the very high ²³⁸Pu/ ^{239,240}Pu ratio at location 2 (= 0.166) may be that this location as mentioned above could have received some airborne deposition from the daily operation of MAYAK, which is only 12 km away from this location. A relatively high deposition of ¹³⁴Cs at location 2 (470 Bq m⁻²) may be indicative for such a contamination. It might therefore be more appropriate to look at the ratios from Bashakul only (Tables 3 and 4). The 238 Pu/ 239,240 Pu mean ratio then becomes 0.050 ± 0.020 and 241 Am/ 239,240 Pu = 0.16 ± 0.03. These ratios still suggest that the plutonium from Lake Karachay may have another isotopic composition than the plutonium from the Kyshtym accident.

4. Conclusion

The contaminations from the 1957 Kyshtym accident and the 1967 Lake Karachay incident was studied by a soil sampling programme carried out between 1990 and 1995 in the South Urals. The samples were analysed for ⁹⁰Sr, ¹³⁷Cs and transuranic elements. From models assuming an exponential decay of deposited activity with distance from the source, inventories from the two events were estimated. For the Kyshtym accident the ⁹⁰Sr inventory deposited between 30 and 300 km from the source was estimated at 0.1–0.5 PBq,

which is compatible with Russian information. In the case of Karachay the ¹³⁷Cs inventory found outside the MAYAK area (7–150 km) was estimated to be higher than that found from Russian measurements. Whether the discrepancy is due to a higher release from Lake Karachay than earlier assumed or to contamination from unreported sources have not been clarified.

The plutonium contaminations from Kyshtym and Karachay were both in the order of 1 TBq ^{239,240}Pu or a total of about 1 kg plutonium was deposited from these two accidents.

Acknowledgements

This study was supported by the INTAS programme contract 94-1221, by the Danish Emergency Management Agency and by the EU's Fission Safety Programme Contract No. F14C-CT95-0001.

References

Aarkrog A and Lippert J. Environmental Radioactivity in Denmark in 1976. Risø-R-361. Risø National Laboratory, Denmark, 1977.

Aarkrog A, Dahlgaard H, Frissel M et al. Sources to anthropogenic radionuclides in the Southern Urals. J Environ Radioact 1992;15:69–80.

Aarkrog A, Bøtter-Jensen L, Chen Qing Jiang, Clausen J, Dahlgaard H, Hansen HJM, Holm E, Lauridsen B, Nielsen SP, Strandberg M and Søgaard-Hansen J. Environmental Radioactity in Denmark in 1992 and 1993. Risø-R-756, Risø National Laboratory, Denmark 1995.

Academy of Science. Conclusion of the commission on the estimation on the ecological situation in the region of production association 'MAYAK', organized by the direction of Presidium of Academy Science. n. 1140–501// Russia. J Radiobiol 1991;31(3):436–452 (in Russian).

Izrael Yu A, Tsaturov Yu S, Petrov VN et al. Reconstruction of the real pattern of terrain radioactive contamination from accidents and nuclear tests based on present-day and other data. Proceedings, International Symposium, Remediation and Restoration of Radioactive-contaminated Sites in Europe. Commission of the European Communities, Doc XI-5027/94. Antwerp, 11–15 October, 1993:325–350.

Harley JH, editor. Health and safety laboratory procedures manual. HASL-300, 1972:602.

Nikipelov BV. Experience in managing the radiological and radioecological consequences of the accidental release of radioactivity which occurred in the Southern Urals in 1957. IAEA SM 316/55, 1989.

Nikipelov BV, Nikitorov AS, Kedrovsky OL, Strakhov MV, Drozhko EK. Practical rehabilitation of territories contaminated as a result of implementation of nuclear material production defence programmes (English translation received Nov. 9, 1990 from Oak Ridge National Lab. USA), 1990a

Continue of the state of the st

Nikipelov BV, Lyzlov A, Koshurnikova N. An experience of the first enterprise of the nuclear industry. Priroda 1990;2:30–38.

Pavlotskaya FI, Goryachenkova VV, Emelanov VV, Fedorova ZM, Myasoedov BF. Pu-239,240 behaviour in soils of the forest steppe zone after the Southern Ural's accident in 1957. At Energ 1992;73:32-37.

Romanov GN, Nikipelov BV, Drozhko EG. The Kyshtym accident: causes, scale and radiation characteristics. In: Proceedings of Seminar on Comparative Assessment of the Environmental Impact of Radionuclides Released during Three Major Nuclear Accidents: Kyshtym, Windscale, Chernobyl. Commission of the European Communities, EUR 13574. Luxembourg 1–5 October, 1990:25–40.

Talvitie NA. Radiochemical determination of plutonium in environmental and biological samples by ion exchange. Anal Chem 1971;43:1827–1830.

Tsaturov Yu S, Anisimova LI. Radionuclide contaminated territories of Russia: identification, restoring and rehabilitation aspects. Proceedings, International Symposium, Remediation and Restoration of Radioactive-contaminated Sites in Europe. Commission of the European Communities, Doc XI-5027/94. Antwerp, 11–15 October, 1993:309–324.

UNSCEAR. Ionizing radiation: sources and biological effects. New York: United Nations, 1993.

to not be been been been of