RADIOACTIVE CONTAMINATION OF THE Techa RIVER, THE URALS

A. V. Trapeznikov,* V. N. Pozolotina,* M. Ya. Chebotina,* V. N. Chukanov,*
V. N. Trapeznikova,* N. V. Kulikov,* S. P. Nielsen,1 and A. Aarkrog1

Abstract—The Techa River in the Urals was contaminated with high-level radioactive waste from the MAJAK nuclear installation around 1950. The total discharge to the river amounted to 100 PBq with 90Sr and 137Cs contributing ~10 PBq each. This study has shown that the river presently contains ~0.3 Tbq 90Sr, ~6 Tbq 137Cs, and ~8 Gbq 239,240Pu. The estimates were made for the part of the river starting 50 km from the point of discharge and ending 240 km downstream at the confluence with the Iset River. Radioactivity was measured only in the upper 0.10-m sediments layer. The external dose rates from the contamination range from 0.1-30 μGy h⁻¹. The activity concentrations decrease exponentially or by power functions with distance.

Health Phys. 65(5):481–488; 1993

Key words: 90Sr; 137Cs; plutonium; water, surface

INTRODUCTION

The Techa River belongs to the Iset-Tobol-Irtys-Ob river system. In the upper reaches it passes the MAJAK nuclear installation. In 1949–1951, medium- and high-level liquid radioactive waste was released into the open river system 6 km from the Tacha source. During that period, 76 × 10⁶ m³ of liquid radioactive waste was discharged, with a total activity of 100 PBq (Academy of Science 1991). Most of the activity (~95%) was discharged in 1950 and 1951. 90Sr and 137Cs contributed 11.6% and 12.2%, respectively. Now 42 y later, the environmental contamination from this source has decayed to 4.3 PBq 90Sr and 4.6 PBq 137Cs.

In September 1951, discharge of waste was eliminated by introducing a cascade of reservoirs and bypass canals. This permitted the removal of significant radioactivity from the open drainage network (Nikipelov et al. 1990); however, before this was accomplished, a large part of the floodplain and the bottom of the river, especially upstream, were contaminated. According to Nikipelov et al. (1990), the major portion (~99%) of the radionuclides were deposited upstream from Muslimovo in the river floodland and bed. The Tacha was withdrawn from economic use and the population of several villages was evacuated. Presently the Asanov swamps in the upper reaches of the river is the area of permanent contamination of the Tacha. Migration of radionuclides from the cascade of reservoirs and canals has been observed. This system contains 7.1 PBq 90Sr and 137Cs (Academy of Science 1991).

The Tacha River's source is in Lake Irtysh and joins the Iset River at the right bank (243 km long) (Fig. 1). The drainage area is 7,600 km². Main hydrological characteristics are summarized in Table 1 (Hydrometeor 1973). Seasonal flooding occurs in April; maximal spring high flood is 2.2 m near the village of Muslimovo and 4 m near the village of Zaitsevskoye. In the winter, the upper stream freezes 4–6 d earlier than the lower stream and usually freezes through to the bottom.

Techa River runs a twisting course through a valley with low slopes and a width up to 2 km. The floodplain is open meadow, locally bushy. The landscape is hilly plains with kolkas of mixed forest. The river bottom near the banks is silt-sandy; the middle of the river is pebbly or sandy.

Upstream from the village of Muslimovo the river passes bogged-up areas. During 1949–1951 these areas accumulated significant quantities of radionuclides.

Direct discharges of radioactive waste to rivers were also practiced in the early days of the U.S. weapon plutonium production at Hanford when substantial quantities of radioactive materials were released to the atmosphere and to the Columbia River; however, the U.S. releases mostly consisted of short-lived radionuclides (Cate et al. 1970).

The purpose of this study is to investigate the contemporary radioecological situation in the Tacha River outside the MAJAK complex and to estimate the total amount of the most biologically significant radionuclides (i.e., 137Cs, 90Sr, and 239,240Pu) in the sediments, water, and biota of the river. In order to estimate the contribution of radionuclides to the Arctic Ocean from the Ob, we plan to continue the research and to study the radioactive trace from the point of discharge along the whole Tetcha-Iset-Tobol-Irtys-Ob river system.
MATERIALS AND METHODS

Sediments, water, and biota samples were taken in July 1990 from four locations of the Techa River: Nadirov Bridge, Maslumovo, Verkhnaya Techa, and Zatechenskoje (see Fig. 1) situated 49, 78, 177, and 237 km, respectively, from the point of discharge.

Duplicate water samples were taken at each location. Samples (80–100 L) were filtered through a cotton wool filter used for removing macro admixtures and then evaporated to dryness.

Sediments (1–2 kg) were collected by a dredge which sampled the upper 0–10-cm layer of sediments 3–4 m from the bank. The samples were dried, grinded, and sifted (mesh = 0.1 cm) and aliquots of 100–200 g were gamma measured. These aliquots were used for the radiochemical analysis of ^{90}Sr (50 g) and transuranics (1 g).

Water plants were sampled in the same locations as sediments. The wet weight of each sample was 2–3 kg. Samples were dried and ashed and 10–20 g ash was used for gamma measurements. Fish was ashed without separation of organs. Gamma background was measured by scintillation detectors.

The samples were analyzed at the Institute of Plant and Animal Ecology (IPAE) for ^{90}Sr (Zvetaeva et al. 1984) and ^{137}Cs and brought to Risø where gamma spectroscopy, plutonium (Talvitie 1971), and americium (Holm et al. 1979) analyses were made. Two sets of ^{137}Cs data were used for an intercomparison between the two laboratories.

The sediment and water inventories in the Techa River may be used for calculating the distribution coefficient (K_d) between water and sediments for the various radionuclides. The inventories were divided by the total amounts of water (4 x 108 kg) and sediments (7 x 108 kg), respectively (calculated from Table 1), in order to get the mean concentrations in Techa sediments and the river water (cf. discussion).

RESULTS

River water

The river water (at Pershinskoe) pH = 7.4 and contained 40.3 mg Ca$^{2+}$ L$^{-1}$, 13.2 mg Mg$^{2+}$ L$^{-1}$, 4.3 mg Na$^+$ L$^{-1}$, 134.2 mg HCO$_3^-$ L$^{-1}$, 30.4 mg SO$_4^{2-}$ L$^{-1}$, 16.4 mg Cl$^-$ L$^{-1}$, 3 mg Fe L$^{-1}$, 8.8 mg O$_2$ L$^{-1}$, and 7.3 mg Si L$^{-1}$.
The concentrations of 89Sr, 137Cs, and 239,240Pu (Table 2) in the Techa River water decrease with distance (x in km) from the point of discharge according to the exponential model $y = e^{-ax}$, where y is the radionuclide concentration in Bq m$^{-3}$, as follows:

$89Sr $a = 8.62 \pm 0.05$;

$$b = (-0.0029 \pm 0.0003)$, (1)

$137Cs $a = 7.03 \pm 0.13$;

$$b = (-0.0120 \pm 0.0008)$, (2)

and

$239,240Pu $a = (-0.38 \pm 0.11)$;

$$b = (0.0074 \pm 0.0007)$. (3)

The error term is 1 standard deviation (SD).

The equations show that at the discharge point, the ratio of 89Sr/137Cs = 4.9, and at Zatechenskoje (where the Techa River enters the Iset River), the ratio increased nearly an order of magnitude to 43. The annual water flow at the discharge point is estimated at $2-3 \times 10^7$ m3 y$^{-1}$ and at Zatechenskoje it increased to $3-4 \times 10^8$ m3 y$^{-1}$ (MAJAK 1990). The 137Cs determinations performed by IPAE and Rise were not significantly different.

When we pass from the point of discharge to the end of the river at Zatechenskoje, the amount of 89Sr transported by Techa River increases from -0.15 T Bq y$^{-1}$ to -1 T Bq y$^{-1}$, while the 137Cs transport seems nearly unchanged (-0.02 ± 0.01 T Bq y$^{-1}$). Thus, there seems to be a net transfer of 89Sr to the river water during its passage through Techa River. The concentration of 60Co was nearly constant in the Techa River water: 3.2 ± 1.1 (±1 SD) Bq 60Co m$^{-3}$, which also suggests a supply of 60Co.

From Tables 1 and 2, the following expressions for water inventories of radionuclides in the Techa River as a function of distance (x m) were derived as follows:

$$\text{Bq}^{60}\text{Co} = \int_{0}^{x} 5 \times 10^{10} x^{0.9} \, dx \sim 10^{10} \text{ Bq},$$

(4)

$$\text{Bq}^{89}\text{Sr} = \int_{0}^{x} 5 \times 10^{10} x^{1.1} \, dx \sim 2 \times 10^{10} \text{ Bq},$$

(5)

$$\text{Bq}^{137}\text{Cs} = \int_{0}^{x} 4 \times 10^{10} x^{0.1} \, dx \sim 10^{10} \text{ Bq},$$

(6)

and

$$\text{Bq}^{239,240}\text{Pu} = \int_{0}^{x} 2 \times 10^{9} x^{0.7} \, dx \sim 10^{9} \text{ Bq}.$$ (7)

Sediments

The sediments in the Techa River contain relatively high 137Cs levels upstream (Table 3), but the levels decrease with increasing distance from the discharge point (see Fig. 2). This is best described by the following power function:

$$y = x^e \times x^k,$$

(8)

where x is the distance (km) from the point of discharge.

Table 1. Main hydrological characteristics of the Techa River (Hydrometeo 1973). Water flows are estimated by extrapolation from information given on the flow rate at Muslimovo and Pershinskiyo (214 km from the discharge point) (MAJAK 1990). Sediment transport is estimated from information on turbidity of Techa River ~85 g sediments m$^{-3}$ of river water (measured at Pershinskiyo).

<table>
<thead>
<tr>
<th>Location</th>
<th>Distance from point of discharge (km)</th>
<th>Mean width (m)</th>
<th>Mean depth (m)</th>
<th>Water flow (km3 y$^{-1}$)</th>
<th>Sediment transport (kg y$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nadzhev Bridge</td>
<td>49</td>
<td>37</td>
<td>2.1</td>
<td>-0.02</td>
<td>-1.66 x 106</td>
</tr>
<tr>
<td>Muslimovo</td>
<td>78</td>
<td>26.5</td>
<td>1.0</td>
<td>0.06</td>
<td>-5 x 106</td>
</tr>
<tr>
<td>Verkhnea Techa</td>
<td>177</td>
<td>25.5</td>
<td>0.5</td>
<td>-0.14</td>
<td>-12 x 106</td>
</tr>
<tr>
<td>Zatechenskoje</td>
<td>237</td>
<td>25.5</td>
<td>1.0</td>
<td>0.35</td>
<td>-30 x 105</td>
</tr>
</tbody>
</table>

Table 2. Radionuclides in Techa River water in July 1990 (relative counting error in %).

<table>
<thead>
<tr>
<th>Location</th>
<th>89Sr</th>
<th>IPAE</th>
<th>Rise</th>
<th>86Co</th>
<th>IPAE</th>
<th>Rise</th>
<th>239,240Pu</th>
<th>IPAE</th>
<th>Rise</th>
<th>239,240Pu</th>
<th>IPAE</th>
<th>Rise</th>
<th>239,240Pu</th>
<th>IPAE</th>
<th>Rise</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nadzhev Bridge</td>
<td>5,000 (1)</td>
<td>620 (5)</td>
<td>500 (1)</td>
<td>2.2 (19)</td>
<td>0.0088 (19)</td>
<td>0.52 (6)</td>
<td>0.020 (14)</td>
<td>0.012 (15)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muslimovo</td>
<td>4,200 (8)</td>
<td>530 (1)</td>
<td>440 (1)</td>
<td>2.6 (20)</td>
<td>BDL*</td>
<td>0.35 (10)</td>
<td>BDL*</td>
<td>0.011 (18)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verkhnea Techa</td>
<td>3,200 (15)</td>
<td>155 (10)</td>
<td>156 (1)</td>
<td>4.8 (11)</td>
<td>0.0071 (23)</td>
<td>0.174 (7)</td>
<td>BDL*</td>
<td>0.065 (29)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zatechenskoje</td>
<td>2,800 (32)</td>
<td>68 (2)</td>
<td>52 (2)</td>
<td>3.2 (11)</td>
<td>BDL</td>
<td>0.123 (6)</td>
<td>0.123 (6)</td>
<td>0.065 (29)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*BDL = below detection limit (i.e., <0.006 Bq 239,240Pu m$^{-3}$).
and y is the radionuclide concentration (Bq kg$^{-1}$). The exponents a and b are given with 1 SD, as follows:

^{90}Sr sand: $a = 23 \pm 2$; $b = -(3.6 \pm 0.5)$, (9)

^{90}Sr silt: $a = 12 \pm 3$; $b = -1.2 \pm 0.6$, (10)

^{137}Cs sand: $a = 28 \pm 2$; $b = -(4.5 \pm 0.4)$, (11)

^{137}Cs silt: $a = 33 \pm 1$; $b = -(5.1 \pm 0.2)$, (12)

$^{239,240}\text{Pu}$ sand: $a = 14.4 \pm 0.3$; $b = -(3.0 \pm 0.1)$, and (13)

$^{239,240}\text{Pu}$ silt: $a = 22 \pm 2$; $b = -(4.2 \pm 0.3)$, (14)

It should be emphasized that these equations are valid only between the points of observations, i.e., within $49-237$ km from the point of discharge. The equations predict unrealistically high concentrations close to the point of discharge. The ^{137}Cs determinations performed by the IPAE and Rise were generally in good agreement, with the exception of the sample from Nadirov Bridge, where we believe that inhomogeneities (hot particles) may have been present.

From Tables 1 and 3, the following expressions for sediment inventories of radionuclides as a function of distance (x m) were derived assuming a mean sediment layer of 150 kg m$^{-2}$ of riverbed corresponding to a mean sediment layer thickness of 10 cm:

\[
\text{Bq}^{90}\text{Sr} = \int_{0}^{237000} 8 \times 10^{-3} \cdot x^{-2.3} \, dx \cdot 3 \times 10^{11},
\]

(15)

\[
\text{Bq}^{137}\text{Cs} = \int_{0}^{23700} 13 \times 10^{3} \cdot x^{-4.8} \, dx \cdot 6 \times 10^{12},
\]

(16)

and

\[
\text{Bq}^{239,240}\text{Pu} = \int_{0}^{237000} 10^{23} \cdot x^{-3.9} \, dx \cdot 8 \times 10^{9},
\]

(17)

Biota

The ^{137}Cs concentrations in Ceratophyllum demersum (Table 4) decreased with distance x (km) from the discharge point according to the power function $y = c \cdot x^a$, where y is Bq ^{137}Cs kg$^{-1}$ dry weight, $a = 20 \pm 1$, and $b = (2.9 \pm 0.2)$ (see Fig. 3).

Other radionuclides in Ceratophyllum (^{60}Co, plutonium, and Americium) also showed a decrease with distance, but ^{90}Sr did not. A single fish sample contained a surprisingly low ^{137}Cs level (cf. the following discussion).

The ^{137}Cs results on biota obtained by the IPAE and Rise, were not significantly different.

Activity ratios

If we compare the ratios between transuranic isotopes in the Techa River with those found in U.S.-produced plutonium, we would find some differences. The $^{239,240}\text{Pu}^{239,240}\text{Pu}$ ratio was 0.012 in the two most contaminated Techa sediment samples from Nadirov Bridge and Muslimovo but was $0.12-0.25$ in Savannah.
Radioactive contamination of the Techa River

Fig. 2. 137Cs in sediment samples collected from the Techa River in July 1990. The concentrations are related to the distance from the outlet from MAJAK to the river.

River sediments, 241Am, 239,240Pu was 0.038 in the two samples, but 0.15–0.22 at Savannah (Alberts et al. 1986).

In 1968 we observed a ratio of 0.019 (Aarkrog 1971) in weapons-grade plutonium in sediments at Thule, Greenland. The mean ratio between 239,240Pu and 137Cs in Techa sediments was $3.4 \pm 1.7 \times 10^{-3}$ [±1 standard error (SE), $N = 7$], and in water, we found $(1.3 \pm 0.35) \times 10^{-3}$ (±1 SE, $N = 4$). The Great Lakes in the U.S. show a water ratio of $(12 \pm 1) \times 10^{-3}$ (±1 SE, $N = 5$) (NRCC 1983). The expected 239,240Pu-137Cs in power reactor fuel elements is 9×10^{-3} (Belyaev et al. 1991). Hence, the Techa contamination showed lower ratios than observed in global fallout and in power reactors.

DISCUSSION

Concentrations

The radionuclide concentrations in the Techa River water may be compared with those in the Columbia River in the U.S., which have been polluted from the plutonium production at Hanford (Eisenbud 1987). The downstream contributions in 1984 from Hanford were 0.2 Bq 137Cs m$^{-3}$, 1 Bq 90Sr m$^{-3}$, and 0.3 Bq 60Co m$^{-3}$ (i.e., 137Cs and 90Sr concentrations were 2 to 3 orders of magnitude higher in the Techa River water, and 60Co was 1 order higher). Compared with global fallout concentrations in rivers at northern temperate latitudes, 90Sr and 137Cs in Techa River water were also 2 to 3 orders of magnitude higher (Aarkrog et al. 1991).

The Techa River sediments may be compared with Savannah River sediments, which have been contaminated from the plutonium production at the Savannah River Plant (SRP). Alberts et al. (1986) measured 0.01–0.13 Bq 239,240Pu kg$^{-1}$ sediments in Savannah River outside the SRP. These levels were 1 to 2 orders of magnitude lower than those in Techa sediments at Nadirov Bridge. The Savannah River samples were collected closer to the plant site than the Techa samples. Compared with global fallout levels in sediments, the

Table 4. Radionuclides in water collected in the Techa River in July 1990. (Relative counting error in 5%; otherwise, the error term is 1 SE of double or triple determinations.)

<table>
<thead>
<tr>
<th>Location</th>
<th>90Sr (Bq m$^{-3}$)</th>
<th>137Cs (Bq m$^{-3}$)</th>
<th>137Cs/Co</th>
<th>90Sr/Co</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nadirov Bridge</td>
<td>1.850 ± 0.100</td>
<td>2.200 ± 0.250</td>
<td>0.87 (9)</td>
<td>87 (9)</td>
</tr>
<tr>
<td>Medumiro</td>
<td>2.460 ± 0.250</td>
<td>1.850 ± 0.250</td>
<td>1.36 (10)</td>
<td>70 (9)</td>
</tr>
<tr>
<td>Vorkhopy Techa</td>
<td>9.000 ± 0.250</td>
<td>5.750 ± 0.250</td>
<td>1.19 (12)</td>
<td>100 (12)</td>
</tr>
<tr>
<td>Zelentsovskaya</td>
<td>6.400 ± 0.250</td>
<td>3.460 ± 0.250</td>
<td>1.22 (12)</td>
<td>100 (12)</td>
</tr>
</tbody>
</table>
Techa sediments showed 137Cs concentrations that were 1 to 4 orders of magnitude higher. In the Great Lakes in the U.S., the 239,240Pu content in the upper sediment layers is 0.5–1 Bq kg$^{-1}$ (NRCC 1983). This is 2 orders of magnitude lower than seen at Muslimovo and Nadirov Bridge but comparable to the levels at Verkhnaja Techa and Zatechenskoje.

Hence, the water and sediment in Techa in general contained significantly higher 90Sr, 137Cs, and 239,240Pu concentrations than seen in the U.S. river systems contaminated from plutonium production facilities. The levels were also significantly higher than seen in freshwater systems contaminated only by global fallout.

Inventories

The calculation of radionuclide inventories in the Techa River just given does not include the amounts deposited between the discharge point and Nadirov Bridge, i.e., on the first 50 km of the rivers. Nor does it comprise what is retained in the floodlands along the river. Furthermore, it should be recalled that the sediment samples represent only the upper 10 cm of the sediments. Higher concentrations may be found below 10 cm; on the other hand, the mean thickness of sediments may be <10 cm, so we may have compensated for this in our sediment inventory calculation.

With regard to the activity deposited in the floodlands, these amounts are estimated to 115–235 TBq 137Cs and 79–189 TBq 90Sr (MAJAK 1990). Of this, 5 TBq 137Cs and 9 TBq 90Sr are deposited downstream from Muslimovo. If we assume proportionality between the inventories in floodlands and in river sediments, we could get a rough estimate of the deposition in the river sediments from the discharge point to Nadirov Bridge. We get 0.1 PBq 137Cs and 2 TBq 90Sr, i.e., an order at magnitude more than found downstream from Nadirov Bridge in Techa River sediments.

If we include the floodlands, the inventories of Techa River become 0.3 PBq 137Cs and 0.2 PBq 90Sr.

To these figures should be added a part of the 7.1 PBq retained in the cascade of reservoirs and canals previously mentioned, since this system also received radioactive waste after the direct discharges to the Techa River stopped. We must therefore conclude that at least $(4.3 + 4.6 - 0.3 - 0.2 - 7.1) = \sim 1$ PBq of 90Sr and 137Cs has to be found elsewhere, viz. in the Ob river system and in the Arctic Ocean.

Observed ratios

In Table 5 the previously calculated sediment and water inventories in the Techa River have been used to calculate the distribution coefficients (K_d) for the various radionuclides. The Techa data are compared with observed ratios from the Rhine (Bayer 1985) and the Danube (IAEA 1976) rivers. It appears that the Techa values are within the range of these data from the literature. The ratios for plutonium and americium agree with the minimum values observed for marine sediments (IAEA 1985).

From Tables 2 and 4, the observed ratios between biota and water were calculated. To get the radionuclide concentrations on a wet-weight basis (20% dry matter), the data for vegetation in Table 4 should be divided by 5.

Table 5 shows a comparison with the data from the literature. In general the Techa ratios are within an order of magnitude of those reported in the references; however, in the case of 137Cs in fish from the Techa River, the ratio is nearly 100 times lower than expected. The reason may be that the fish caught at Nadirov Bridge may have come from downstream where the 137Cs water concentrations are much lower. The concentrations of 90Sr and 60Co in Techa water and sediments do not show a similar rapid decrease with distance. Hence, it is reasonable to assume that the radionuclide content of a moving fish in the Techa River is in closer equilibrium with environmental levels of 90Sr and 60Co than with those of 137Cs. Consequently, the concentration ratios for 90Sr and 60Co would be expected to be in better agreement with those given in the literature than that of 137Cs, and that was what we actually observed.

Doses

The effective doses to the population along the Techa River has been estimated by MAJAK (1990). The doses (mSv) may be related to the distance x (km) from the discharge point, as follows

$$ mSv = 1,100 e^{-0.01x}. \quad (18) $$

This effective dose pattern is compatible with the external dose rates measured in July 1990 by the IPAE (Table 6).

CONCLUSION

Due to liquid discharges of high-level radioactive waste from the MAJAK nuclear installation in the late
Table 5. Observed radionuclide concentration ratios in Techa River samples compared with other observations.

<table>
<thead>
<tr>
<th>Radionuclide</th>
<th>References</th>
<th>Sediment (dry)</th>
<th>Plant (fresh)</th>
<th>Fish (fresh)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>water</td>
<td>water</td>
<td>water</td>
</tr>
<tr>
<td>60Co</td>
<td>This work</td>
<td>5×10^3</td>
<td>8×10^2</td>
<td>10^2</td>
</tr>
<tr>
<td></td>
<td>Rhine (1982)</td>
<td>1×10^3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dunabe (1976)</td>
<td>$(0.5-1.2) \times 10^3$</td>
<td>2×10^2</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Thompson et al. (1972)</td>
<td>$(1-80) \times 10^3$</td>
<td>$(1-3) \times 10^3$</td>
<td>60</td>
</tr>
<tr>
<td>85Sr</td>
<td>This work</td>
<td>10^3</td>
<td>2×10^3</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>Rhine (1982)</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dunabe (1976)</td>
<td>$25-75$</td>
<td>$20-3 \times 10^2$</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Thompson et al. (1972)</td>
<td>5×10^2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kalikov et al. (1988)</td>
<td>$75-500$</td>
<td>3×10^3</td>
<td>$(1-3) \times 10^3$</td>
</tr>
<tr>
<td>137Cs</td>
<td>This work</td>
<td>3×10^4</td>
<td>1×10^3</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Rhine (1982)</td>
<td>2×10^4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dunabe (1976)</td>
<td>$(1-28) \times 10^3$</td>
<td></td>
<td>$(2-5) \times 10^3$</td>
</tr>
<tr>
<td></td>
<td>Thompson et al. (1972)</td>
<td>2×10^3</td>
<td>5×10^2</td>
<td>2×10^2</td>
</tr>
<tr>
<td></td>
<td>Kalikov et al. (1988)</td>
<td>$2-4 \times 10^3$</td>
<td></td>
<td>$(1-10) \times 10^3$</td>
</tr>
<tr>
<td>Plutonium</td>
<td>This work</td>
<td>5×10^4</td>
<td>2×10^3</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Thompson et al. (1972)</td>
<td>3.3×10^3</td>
<td></td>
<td>5.5</td>
</tr>
</tbody>
</table>

*The dry matter content of river plants is 20%.

Table 6. Dose rates in μGy h$^{-1}$ along the Techa River.

<table>
<thead>
<tr>
<th>Location</th>
<th>Water surface</th>
<th>Bottom</th>
<th>Riverbank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nadrovo Bridge</td>
<td>28.30</td>
<td>0.90-24</td>
<td></td>
</tr>
<tr>
<td>Muzhirmovo</td>
<td>6.2-16</td>
<td>0.20-15</td>
<td>0.60-28</td>
</tr>
<tr>
<td>Verkhaja Techa</td>
<td>0.19</td>
<td>0.13</td>
<td>0.15</td>
</tr>
<tr>
<td>Zatichenskoje</td>
<td>0.10</td>
<td>0.1</td>
<td>0.2</td>
</tr>
</tbody>
</table>

1940's and early 1950's, the Techa River contains enhanced levels of 85Sr, 137Cs, 239,240Pu, 241Am, and 60Co. The levels upstream are several orders of magnitude higher than those expected from global fallout. Water concentrations 240 km downstream from the discharge point are 2 to 3 orders of magnitude higher for 85Sr and 137Cs than the expected global fallout levels in river water.

This study only accounts for a minor part of the total radionuclide discharges to the Techa River, viz. 7×10^{-3} of the 85Sr and 1.3 $\times 10^{-3}$ of the 137Cs. The activity was preferentially deposited in the sediments. If we include the floodlands and the first 50 km from the discharge point of river sediments, which was not represented in this study, we may have accounted for 5-10% of the total discharge, but this estimate needs further verification. Most of the 4.3 Pbq 85Sr and 4.6 Pbq 137Cs discharged from MAJAK are probably found in the cascade of reservoirs and canals within the fence of MAJAK. More than 1 Pbq may, however, be present downstream of the Techa River in the Ob river system or even in the Arctic Ocean. The analytical intercomparison between the IEPA and Risø showed that the two institutions produced comparable 137Cs data.

REFERENCES

Holm, E.; Persson, B. R. R. Behaviour of natural (Th, U) and artificial (Pu, Am) actinides in coastal waters. In: Marine
National Research Council Canada. Radioactivity in the Canadian aquatic environment. Ottawa, Canada; Associate Committee on Scientific Criteria for Environmental Qual-
ity; NRCC No. 19250; 1983: 292.