Volume 6

IMA2010
20th General Meeting of the International Mineralogical Association
21–27 August, 2010
Budapest, Hungary

Published by the Department of Mineralogy, Geochemistry and Petrology, University of Szeged
ACTA MINERALOGICA-PETROGRAPHICA
established in 1922

ABSTRACT SERIES
HU ISSN 0324-6523
HU ISSN 1589-4835

Editor-In-Chief
Emlér Pál-Molnár
University of Szeged, Szeged, Hungary
E-mail: palm@geo.u-szeged.hu

EDITORIAL BOARD
Péter Árkai, György Buda, István Dódony, Tamás Fancsik, János Földessy, Szabolcs Harangi, Magdolna Hetényi, Balázs Koroknai, Tivadar M. Tóth, Gábor Papp, Mihály Pósfai, Péter Rózs, Péter Sipos, Csaba Szabó, Sándor Szakáll, Tibor Szederkényi, István Viczián, Tibor Zelenka

Abbreviated title:

This volume was published for the
375th anniversary of the
Eötvös Loránd University, Budapest.

The publication was co-sponsored by the
National Office for Research and Technology, Budapest.

IMA2010 (www.imade2010.hu) is organised in the frame of the ELTE375 scientific celebration activities.

IMA2010 PUBLICATION SUBCOMMITTEE
Chairman: Gábor Papp, Hungarian Natural History Museum, Budapest (HU)
Members: Vladislav Bermanec, University of Zagreb (HR), Igor Broska, Geological Institute, Slovak Academy of Sciences (SK), Volker Höck, University of Salzburg (AT), Gheorghe Ilincă, University of Bucharest (RO), Milan Novák, Masaryk University, Brno (CZ), Zbigniew Sawłowicz, Jagiellonian University in Kraków (PL), Simona Skobe, University of Ljubljana (SI), Strashimir Borisov Strashimirov, University of Mining and Geology “St. Ivan Rilski” (BG), Nada Vasković, University of Belgrade (RS)

OFFICERS OF THE IMA2010 ORGANISING COMMITTEE
Chairman: Tamás G. Weiszberg, Budapest, Hungary,
Secretary General: Dana Pop, Cluj-Napoca, Romania

Editorial Office Manager
Anikó Batki
University of Szeged, Szeged, Hungary
E-mail: batki@geo.u-szeged.hu

Editorial Address
H-6701 Szeged, Hungary
P.O. Box 651
E-mail: ashvirda@geo.u-szeged.hu

The Acta Mineralogica-Petrographica is published by the Department of Mineralogy, Geochemistry and Petrology, University of Szeged, Szeged, Hungary
© Department of Mineralogy, Geochemistry and Petrology, University of Szeged

On the cover: Map of the Carpathian region with type localities of new mineral species, rocks, fossil resins and hydrocarbons discovered in (first described from) the area, including both valid and discredited species. See the last page for the locality names corresponding to numbers. Map plotted by Ferenc Mádal from the data of Gábor Papp for the exhibition of the Hungarian Natural History Museum, entitled "There is something new under the earth", organised on the occasion of IMA2010.
Calcium oxalates in renal stones

Izatulina, A.R.¹, Punin, Yu.O., Shtrukenberg, A.G.¹, Frank-Kamenetskaya, O.V. & Gurzhiy, V.V.¹
Dept. of Crystallography, Saint-Petersburg State University, Saint-Petersburg, Russia (alinazuzina@mail.ru)

Urolithiasis is a rather widespread disease. However till now there are no reliable methods of preventive maintenance of this illness, despite of significant efforts made in the past. Moreover, it is not completely clear, how renal stones are forming.

The majority of renal stones consist of the calcium oxalate hydrates whewellite CaC₂O₄·H₂O and wedделite CaC₂O₄·(2±x)H₂O. Origin and growth kinetics, area of stability and the phase transitions of calcium oxalate crystals were studied in details for a long time. However, the comparison of experimental data shows strong differences suggesting that some additional factors may influence formation and stability of calcium oxalate phases.

The main purpose of this work is to research the factors that raise the weddlelite stability: temperature, pH, proportion of calcium and oxalate ions, organic and inorganic components of physiological solution, amount of micromycetes and bacterial-viral associates, and time of crystallization. Special attention has been devoted to study the variability of the water content in the structure of wedellelite and its influence on the dehydration and phase transitions in renal stones. Besides, another purpose of the work was to reveal correlations between x and wedellelite unit cell parameters and to offer on this basis an express way to estimate the amount of zeolitic water present.

The influence of crystallization conditions on the formation of calcium oxalates was investigated by simulation experiments according to a physiological medium. To estimate the variation of the amount of zeolitic water in the structure of wedellelite and to reveal the ratio of x and unit cell parameters the crystal structures were refined by single crystal x-ray diffraction of nine wedellelite crystals from different renal stones.

The results showed that the factors increasing the wedellelite stability are supersaturation, pH, concentration of stabilizing impurities (for example CO₃²⁻ or Mg²⁺), and the amount of protein substance. Since it was found that wedellelite transforms into whewellite with time, the stability of the former presumably depends on the amount of structural water.

In the wedellelite crystal structure (S.G. 14/m) [1] Ca atoms are coordinated in slightly distorted square antiprisms linked by a common edge to two adjacent ones to form chains along the c axis. These chains are connected to each other by common oxalate groups and hydrogen bonding of water molecules. Ca-polyhedra chains form channels occupied by “zeolitic” water molecules.

Our investigation showed that the amount of “zeolitic” water indeed causes a variation of the unit cell parameters, especially the a parameter (12.336 – 12.371 Å) as well as the interatomic spacing. For example, the distance between W1 water molecules, adjacent to the “zeolitic” water of one layer parallel to (001) varies from 3.211 – 3.287 Å.

According to the limiting values of the a unit cell parameter our result allows to estimate the variation of the x values (0.13 – 0.37 at. u.) in the wedellelite crystals of renal stones. Thus in most cases x is close to the upper limit.

Acknowledgements: This work was supported by the Russian Foundation for Basic Research (grant #10-05-00881-a).


Quaternary mammalian bones and teeth diagenesis in karst cavities of Middle and Northern Urals, Russia: implications of thermal, elemental and spectroscopy data

Kiseleva, D.V.¹, Votyakov, S.L.¹, Smirnov, N.G.², Shchapolva, Yu.V.¹ & Sadykova, N.O.²
¹Institute of Geology and Geochemistry, UB RAS, Ekaterinburg, Russia (kiseleva@igg.uran.ru)
²Institute of Plant and Animal Ecology, UB RAS, Ekaterinburg, Russia

Chemical composition and microstructure of Quaternary mammalian bones and teeth remains have been investigated by means of scanning electron and atomic force microscopy, electron probe microanalysis, trace element inductively coupled plasma mass-spectrometry, thermal and thermokinetic analysis, infrared, Raman and electron spin resonance spectroscopy.

Samples of bones and teeth remains represented 11 various sites of Middle and Northern Urals, Russia. They included Holocene and Pleistocene orthognathic and zoogenic rodent remains from the earth surface, rock-shelters, grotoes and karst cavities [1].

The hydrolytic degradation of the organic component of bone tissue and the conversion of the inorganic constituents of bone have been registered on SEM images, e.g. porosity increase, peeling, bacterial attack, rotting, initial structure decomposition and secondary mineral formation [2].

The dynamics of elemental composition of bone have been investigated and geochemical indices were calculated. The rare earth elements (La-Lu) and high field strength elements (Y, Zr, Hf, Ta, Th, U) appear to be promising indicators of relative age estimation by tissue accumulation degree.

After thermal analysis (20-800°C) estimates of organic content determined as mass loss at 200-650°C in bone remains series have been used to reveal different age admixtures and chronological ranging.

Ion-radicals induced by thermo-chemical transformations of organic constituent in the temperature range of 200-650°C have been observed in bone (tooth) tissues. The line shape and width parameters of ion radicals have been analyzed and their age variations examined.

Phase transformation during fossilization has been examined by infrared and Raman spectroscopy in four spectrum ranges attributed to inorganic phase structural fragment vibrations (PO₃³⁻, H₂O and OH⁻, CO₃²⁻ in A and B-positions). From this, bone apatite crystallinity, degree of apatite P-O bond ionicity-covalency, carbonate-ion relative concentration and its inter-positional distribution, and alterations in bone surface micro- and nanostructure were deduced.

Several types of fossilization distinguished by correlations of organic components of bone and trace elements content have been assigned. The results obtained were used to evaluate the relative age of bone. Some questions about the degree of synchronism were discussed for the investigated series of fossil and sub-fossil rodent bone remains representing various sites in the Urals.